
Jonathan Hsieh
Steve Gribble

Hank Levy
University of Washington

NSDI ’10, San Jose, CA

1

Hsieh, Gribble, Levy. NSDI'10 4/29/2010

 The web is an ever-changing, interesting, and
incredibly massive database of information
 Google,7/25/08: 1 trillion unique URLS in index

 There are many crawler applications that
scour the web to harvest data

Hsieh, Gribble, Levy. NSDI'10 4/29/2010

2

  Crawl the entire web
and use all of the
content

  Crawl the entire web and
use a small subset of the
content

4/29/2010 Hsieh, Gribble, Levy. NSDI'10

3

 Crawler Applications do two
tasks:
 Crawl the entire web
 Application specific work

 Crawling at web scale is hard
 Expensive
 Operationally difficult
 Discards most documents

4

Hsieh, Gribble, Levy. NSDI'10 4/29/2010

  Decouple the difficult crawling tasks from the
application-specific tasks

4/29/2010

5

Hsieh, Gribble, Levy. NSDI'10

ap
p

sp
ec

ifi
c

ap
p

sp
ec

ifi
c

ap
p

sp
ec

ifi
c

Web

  Share the crawler as a common service
  Still need to deliver the deluge

4/29/2010

6

Hsieh, Gribble, Levy. NSDI'10

ap
p

sp
ec

ifi
c

ap
p

sp
ec

ifi
c

Web

ap
p

sp
ec

ifi
c

Ex
te

ns
ib

le
 C

ra
w

le
r

  Make filtering a shared resource
  Only a small trickle of documents now!

4/29/2010

7

Hsieh, Gribble, Levy. NSDI'10

ap
p

sp
ec

ifi
c

ap
p

sp
ec

ifi
c

Web

ap
p

sp
ec

ifi
c

Ex
te

ns
ib

le
 C

ra
w

le
r

Web

  Client uses filter language to inject filters
  The crawler harvests webpages and dispatches

documents
  A filter engine evaluates documents
  Document matches are collected by crawler apps

8

Hsieh, Gribble, Levy. NSDI'10 4/29/2010

As banks deal with fraud…
Democrats are embolden..
Air travelers stranded in ..

Defense Secretary Robert ..
write(unescape(“%20%de..

<script language=…
Jonathan Hsieh
Steve Gribble

Hank Levy

match
Web

  Client uses filter language to inject filters
  The crawler harvests webpages and dispatches

documents
  A filter engine evaluates documents
  Document matches are collected by crawler apps

9

Ex
te

ns
ib

le
 C

ra
w

le
r

Hsieh, Gribble, Levy. NSDI'10 4/29/2010

As banks deal with fraud…
Democrats are embolden..
Air travelers stranded in ..

Defense Secretary Robert ..
write(unescape(“%20%de..

<script language=…
Jonathan Hsieh
Steve Gribble

Hank Levy

•  The extensible crawler is a service that must be:
•  Flexible

•  Support a diverse set of crawler applications
•  Expressive filter language for complex web data

•  Scalable
•  large filter sets (10’s millions-billions)

•  efficient filter execution
•  high document throughput (100k docs/s)

•  commodity cluster architecture
•  Low Latency

•  support real-time applications

10

Hsieh, Gribble, Levy. NSDI'10 4/29/2010

  Search engine
  Millions of humans

constantly enter one
query at a time
  Queries are keywords
  Query latency important
  Return only the top-ranked

subset of matches

  Process a stream of
queries against a
document index

  Extensible crawler
  Hundreds of programs

periodically enter millions
of filters
  Filters are conjuncts of

expressions.
  Doc latency important
  Returns all matches

  Process a stream of
documents against a filter
index

4/7/2010 Hsieh, Gribble, Levy; NSDI'10

11

Motivation

Implementation and Evaluation
Conclusion

12

Hsieh, Gribble, Levy. NSDI'10 4/29/2010

Web

 Design Tradeoffs of Filter Language
 Efficient Filter Evaluation

13

Ex
te

ns
ib

le
 C

ra
w

le
r

Hsieh, Gribble, Levy. NSDI'10 4/29/2010

Fi
lte

r E
va

lu
at

io
n

 E
ng

in
e

As banks deal with fraud…
Democrats are embolden..
Air travelers stranded in ..

Defense Secretary Robert ..
write(unescape(“%20%de..

<script language=…
Jonathan Hsieh
Steve Gribble

Hank Levy

Filter Injection Interface

raw docs
matches

Web

 Design Tradeoffs of Filter Language
 Efficient Filter Evaluation

14

Ex
te

ns
ib

le
 C

ra
w

le
r

Hsieh, Gribble, Levy. NSDI'10 4/29/2010

Fi
lte

r E
va

lu
at

io
n

 E
ng

in
e

As banks deal with fraud…
Democrats are embolden..
Air travelers stranded in ..

Defense Secretary Robert ..
write(unescape(“%20%de..

<script language=…
Jonathan Hsieh
Steve Gribble

Hank Levy

Filter Injection Interface

As banks deal with fraud…
Democrats are embolden..
Air travelers stranded in ..

Defense Secretary Robert ..
write(unescape(“%20%de..

<script language=…
Jonathan Hsieh
Steve Gribble

Hank Levy

As banks deal with fraud…
Democrats are embolden..
Air travelers stranded in ..

Defense Secretary Robert ..
write(unescape(“%20%de..

<script language=…
Jonathan Hsieh
Steve Gribble

Hank Levy

filter index

raw docs
matches

Web

 Design Tradeoffs of Filter Language
 Efficient Filter Evaluation
 Achieving Scale with Commodity Clusters

15

Ex
te

ns
ib

le
 C

ra
w

le
r

Hsieh, Gribble, Levy. NSDI'10 4/29/2010

Fi
lte

r E
va

lu
at

io
n

 E
ng

in
e

Filter Injection Interface

filter index

filter
index

filter
index

filter
index

filter
index raw docs

matches

 The filter language needs to be expressive
 Support a wide variety of apps
 Web data is complex, largely unstructured

 Examples:
 substring(“Jonathan Hsieh”)
 regex(“Jonathan.{1,20}Hsieh”)
 substring(“Jonathan”) AND substring
(“Hsieh”)

16

Hsieh, Gribble, Levy. NSDI'10 4/29/2010

  Filter engine transforms
and executes filters

  Efficient
  indexing and evaluation

  Expressive
  support complex data and

diverse apps
  Accurate

  we promise 100% recall
  we permit false positives

(less than 100% precision)
to gain efficiency

4/29/2010

17

Hsieh, Gribble, Levy. NSDI'10

efficient

expressive accurate

 One pass per document per filter
 Work = # documents * # filters

 Not cost efficient

4/29/2010

18

Hsieh, Gribble, Levy. NSDI'10

inject filters
for D = next document

for each F in set of filters
if F accepts D

forward to collector
else

drop

inject filters
for D = next document

for each F in set of filters
if F accepts D

forward to collector
else

drop

  Indexing filters.
  Trade memory for CPU
  Execute all filters simultaneously for less than linear cost.
  Compile cost is amortized because filters change infrequently

  Single pass per document

4/29/2010

19

Hsieh, Gribble, Levy. NSDI'10

index and inject filters
for D = next document

if filterIndex accepts D
 forward to collector

else
 drop

  Execution of many
substrings
  One pass per filter

  Execution of Aho-
Corasick DFA in one
pass
  One pass for all filters

4/29/2010

20

Hsieh, Gribble, Levy. NSDI'10

As banks de…
Air travelers …

A s
i r

b

compile into
Aho Corasick DFA

a

t r

n k
a

s
v e l

d e
e

workers
pod

Web

di
sp

at
ch

co
lle

ct

Fk …Fo

crawler app

crawler app

crawler app

21

Hsieh, Gribble, Levy. NSDI'10 4/29/2010

Ff…Fj

Fp…Ft

Fu…Fz

Fa…Fe

workers
pod

Web

di
sp

at
ch

co
lle

ct

Fk …Fo

crawler app

crawler app

crawler app

22

Hsieh, Gribble, Levy. NSDI'10 4/29/2010

Ff…Fj

Fp…Ft

Fu…Fz

Fa…Fe

Web

crawler app

crawler app

crawler app

23

Hsieh, Gribble, Levy. NSDI'10 4/29/2010

di
sp

at
ch

co
lle

ct
 Fa…Fm

Fn…Fq

Fr…Fz
di

sp
at

ch

co
lle

ct
 Fa…Fm

Fn…Fq

Fr…Fz

di
sp

at
ch

co
lle

ct
 Fa…Fm

Fn…Fq

Fr…Fz

pod

pod

pod

 Document partitioning
 Every document must be evaluated by a pod
 Pods are independent
 Document workload is embarrassingly parallel

 Filter set partitioning
 Every document must evaluated by every machine

in a pod
 Constrained by slowest node in a pod

24

Hsieh, Gribble, Levy. NSDI'10 4/29/2010

Motivation
Architecture

Conclusion

25

Hsieh, Gribble, Levy. NSDI'10 4/29/2010

 Worker execution optimization
 Relaxing and Staging filters

 Pod filter partitioning strategies
 Random vs Sorted

 Prototype crawler applications

4/29/2010

26

Hsieh, Gribble, Levy. NSDI'10

universe of all
possible documents

relaxed matches

  Indexing is not always efficient
 Relax filters to a less precise

version
 False positives now possible
 Trade accuracy for reduced

resource requirements
exact

matches

27

Hsieh, Gribble, Levy. NSDI'10 4/29/2010

substring(“General Motors said on
Wednesday that it had a positive cash
flow of $1 billion in the six months
after emerging from bankruptcy
protection”)

substring(“General Motors said on
Wednesday”) that it had a positive cash
flow of $1 billion in the six months
after emerging from bankruptcy
protection”).

  Relaxing introduces false
positives
  A relaxed filter may accept too many

documents
  Solution: Optional second phase

called staging
  If a relaxed filter matches in first

stage, only execute its full filter in
second stage

  Clean up false positives if cheap
enough

4/29/2010

28

Hsieh, Gribble, Levy. NSDI'10

relaxed matches

exact
matches

4/29/2010

29

Hsieh, Gribble, Levy. NSDI'10

regex(‘<script language="javascript"> eval
(unescape("%66%75%6e%63%74%69%6f%6e%20%.
{4}%28%.{4}%29%7b%76%61%72%20’)

 Relaxing a malware regular expression

4/29/2010

30

Hsieh, Gribble, Levy. NSDI'10

substring(‘<script language="javascript">
eval(unescape("%66%75%6e%63%74%69%6f%6e
%20%’)
AND substring(‘%28%’)
AND substring(‘%29%7b%76%61%72%20’)

 Relaxing a malware regular expression
 Relax regex into a conjunct of substrings

4/29/2010

31

Hsieh, Gribble, Levy. NSDI'10

substring(‘<script language="javascript">
eval(unescape("%66%75%6e%63%74%69%6f%6e
%20%’)
AND substring(‘%28%’)
AND substring(‘%29%7b%76%61%72%20’)

 Relaxing a malware regular expression
 Relax regex into a conjunct of substrings
 Relax conjunct into a single term

4/29/2010

32

Hsieh, Gribble, Levy. NSDI'10

substring(‘<script language="javascript">
eval(unescape("%66%75%6e%63%74%69%6f%6e
%20%’)

 Relaxing a malware regular expression
 Relax regex into a conjunct of substrings
 Relax conjunct into a single term

4/29/2010

33

Hsieh, Gribble, Levy. NSDI'10

substring(‘<script language="javascript">
eval(unescape("%66%75%6e%63%74%69%6f%6e
%20%’)

 Relaxing a malware regular expression
 Relax regex into a conjunct of substrings
 Relax conjunct into a single term
 Relax long substring into short substring

4/29/2010

34

Hsieh, Gribble, Levy. NSDI'10

substring(‘<script language="javascript">
eval(unescape("%66%75%6e%63%74%69%6f%6e
%20%’)

 Relaxing a malware regular expression
 Relax regex into a conjunct of substrings
 Relax conjunct into a single term
 Relax long substring into short substring

4/29/2010

35

Hsieh, Gribble, Levy. NSDI'10

substring(‘<script language="javascript">
eval(unescape("%66%75%6e%63%74%69%6f%6e
%20%’)

 Relaxing a malware regular expression
 Relax regex into a conjunct of substrings
 Relax conjunct into a single term
 Relax long substring into short substring
 Select relaxations carefully!

4/29/2010

36

Hsieh, Gribble, Levy. NSDI'10

substring(‘<script language="javascript">
eval(unescape("%66%75%6e%63%74%69%6f%6e
%20%’)

 Relaxing a malware regular expression
 Relax regex into a conjunct of substrings
 Relax conjunct into a single term
 Relax long substring into short substring
 Select relaxations carefully!

4/29/2010

37

Hsieh, Gribble, Levy. NSDI'10

substring(‘75%6e%63%74%69%6f%6e%20%’)

 Relaxing a malware regular expression
 Relax regex into a conjunct of substrings
 Relax conjunct into a single term
 Relax long substring into short substring
 Select relaxations carefully!

 Naïve filter execution is not cost effective
  Index filters to use memory instead of CPU

 Each machines does more work

38

Hsieh, Gribble, Levy. NSDI'10 4/29/2010

0

100

200

300

400

500

600

1 10 100 1,000 10,000 100,000 1,000,000 10,000,000

no

de
s

fo
r 1

00
,0

00

do
cs

/s

wikipedia filters

naïve

0

100

200

300

400

500

600

1 10 100 1,000 10,000 100,000 1,000,000 10,000,000

no

de
s

fo
r 1

00
,0

00

do
cs

/s

wikipedia filters

naïve
index+opt

  Indexing is very memory intensive.
  Relax filters for less memory consumption

 Order of magnitude less memory used
 Order of magnitude more filters on a worker

39

Hsieh, Gribble, Levy. NSDI'10 4/29/2010

0.0001

0.001

0.01

0.1

1

10

100

0.01 0.1 1 10

m
em

or
y

fo
ot

pr
in

t (
G

B
)

wikipedia filters (millions)

naïve
indexed

0.0001

0.001

0.01

0.1

1

10

100

0.01 0.1 1 10

m
em

or
y

fo
ot

pr
in

t (
G

B
)

wikipedia filters (millions)

naïve
indexed
relaxed+indexed

  Indexes for large filter sets
are too big for a single
machine
  Partition filters and build

indexes on subsets

  Different strategies affect
pod performance
  Random: cheap and quick
  Sorted: sharing efficiences

4/29/2010 Hsieh, Gribble, Levy. NSDI'10

40

sorted partitioning (alpha)

random partitioning

As banks deal with fraud…

Democrats are embolden..

Air travelers stranded in ..

Defense Secretary Robert ..

As banks deal with fraud…

Democrats are embolden..

Air travelers stranded in ..

Defense Secretary Robert ..

  Random filter partitioning has low throughput variance
  Sorted partitioning (alphabetizing) improves most nodes’

throughput, but has high variance.
  Compensate for variance by blacklisting troublesome filters

max random
throughput

max alpha
throughput

max alpha +
blacklist

throughput

41

Hsieh, Gribble, Levy. NSDI'10 4/29/2010

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

10000

0 5 10 15 20

no
de

 th
ro

ug
hp

ut
 (d

oc
s/

s)

node #

random
0

1000
2000
3000
4000
5000
6000
7000
8000
9000

10000

0 5 10 15 20

no
de

 th
ro

ug
hp

ut
 (d

oc
s/

s)

node #

random
alphabetic

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

10000

0 5 10 15 20

no
de

 th
ro

ug
hp

ut
 (d

oc
s/

s)

random
alphabetic
alphabetic-BL

Most machines not at capacity!

 Copyright Violation/Plagiarism
 Sentences from Wikipedia, AP, and Reuters articles

 Web Malware Detection
 Regexes from ClamAV web malware signatures

 Vanity/Online Identity Service
 Regexes generated from names in a university

directory

4/29/2010

42

Hsieh, Gribble, Levy. NSDI'10

  Applications tested against 3.68M web documents
 Gathered by Nutch 0.9 crawler and seeded by DMOZ

4/29/2010

43

Hsieh, Gribble, Levy. NSDI'10

Copyright	
 Malware	
 Identity	

# filters	
 251,657	
 3,128	
 10,622	

Relaxed-only	
 Doc Hit Rate	
 0.664%	
 45.4%	
 69.0%	

Throughput
(docs/s)	
 8,535	
 8,534	
 7,244	

Relax+staged	
 Doc Hit Rate	
 0.016%	
 0.009% 13.1%	

Throughput
(docs/s)	
 8,229 6,354 592
machines for
100k docs/s	
 12.2	
 15.7	
 169	

Motivation
Architecture

Implementation and Evaluation

44

Hsieh, Gribble, Levy. NSDI'10 4/29/2010

 We introduced the service, the architecture,
and the implementation of the extensible
crawler
 Flexible filter language for efficiently filtering

complex web data
 Scalable and cost-efficient on commodity clusters

architecture
 Low latency to support real-time web

applications

45

Hsieh, Gribble, Levy. NSDI'10 4/29/2010

46

Hsieh, Gribble, Levy. NSDI'10 4/29/2010

