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 The web is an ever-changing, interesting, and 
incredibly massive database of information 
 Google,7/25/08:  1 trillion unique URLS in index 

 There are many crawler applications that 
scour the web to harvest data 
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  Crawl the entire web 
and use all of the 
content 

  Crawl the entire web and 
use a small subset of the 
content 
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 Crawler Applications do two 
tasks: 
 Crawl the entire web  
 Application specific work 

 Crawling at web scale is hard  
 Expensive  
 Operationally difficult 
 Discards most documents 
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  Decouple the difficult crawling tasks from the 
application-specific tasks 
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  Share the crawler as a common service 
  Still need to deliver the deluge 
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  Make filtering a shared resource 
  Only a small trickle of documents now! 
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  Client uses filter language to inject filters 
  The crawler harvests webpages and dispatches 

documents 
  A filter engine evaluates documents 
  Document matches are collected by crawler apps 
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Democrats are embolden.. 
Air travelers stranded in .. 

Defense Secretary Robert .. 
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<script language=… 
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Hank Levy 



match 
Web 

  Client uses filter language to inject filters 
  The crawler harvests webpages and dispatches 

documents 
  A filter engine evaluates documents 
  Document matches are collected by crawler apps 

9 

Ex
te

ns
ib

le
 C

ra
w

le
r 

Hsieh, Gribble, Levy. NSDI'10 4/29/2010 

As banks deal with fraud… 
Democrats are embolden.. 
Air travelers stranded in .. 

Defense Secretary Robert .. 
write(unescape(“%20%de.. 

<script language=… 
Jonathan Hsieh 
Steve Gribble 

Hank Levy 



•  The extensible crawler is a service that must be: 
•  Flexible  

•  Support a diverse set of crawler applications  
•  Expressive filter language for complex web data 

•  Scalable  
•  large filter sets (10’s millions-billions) 

•  efficient filter execution 
•  high document throughput (100k docs/s) 

•  commodity cluster architecture 
•  Low Latency 

•  support real-time applications 
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  Search engine  
  Millions of humans 

constantly enter  one 
query at a time 
  Queries are keywords  
  Query latency important 
  Return only the top-ranked 

subset  of matches 

  Process a stream of 
queries against a 
document index 

  Extensible crawler  
  Hundreds of programs 

periodically enter millions 
of filters 
  Filters are conjuncts of 

expressions.  
  Doc latency important 
  Returns all matches 

  Process a stream of 
documents against a filter 
index 

4/7/2010 Hsieh, Gribble, Levy; NSDI'10 

11 



Motivation 

Implementation and Evaluation 
Conclusion 
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Web 

 Design Tradeoffs of Filter Language 
 Efficient Filter Evaluation  
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 Design Tradeoffs of Filter Language 
 Efficient Filter Evaluation  
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Web 

 Design Tradeoffs of Filter Language 
 Efficient Filter Evaluation  
 Achieving Scale with Commodity Clusters 
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 The filter language needs to be expressive 
 Support a wide variety of apps 
 Web data is complex, largely unstructured 

 Examples: 
 substring(“Jonathan Hsieh”) 
 regex(“Jonathan.{1,20}Hsieh”) 
 substring(“Jonathan”) AND substring
(“Hsieh”) 
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  Filter engine transforms 
and executes filters 

  Efficient 
  indexing and evaluation 

  Expressive 
  support complex data and 

diverse apps 
  Accurate 

  we promise 100% recall 
  we permit false positives  

(less than 100% precision) 
to gain efficiency 
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 One pass per document per filter  
 Work = # documents * # filters 

 Not cost efficient 

4/29/2010 
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inject filters 
for D = next document 

for each F in set of filters 
if F accepts D  

forward to collector 
else  

drop 



inject filters 
for D = next document 

for each F in set of filters 
if F accepts D  

forward to collector 
else  

drop 

  Indexing filters.  
  Trade memory for CPU  
  Execute all filters simultaneously for less than linear cost. 
  Compile cost is amortized because filters change infrequently 

  Single pass per document 
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index and inject filters  
for D = next document 

if filterIndex accepts D 
 forward to collector 

else 
 drop 



  Execution of many 
substrings 
  One pass per filter 

  Execution of Aho-
Corasick DFA in one 
pass 
  One pass for all filters 
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 Document partitioning 
 Every document must be evaluated by a pod 
 Pods are independent  
 Document workload is embarrassingly parallel 

 Filter set partitioning 
 Every  document must evaluated by every machine 

in a pod 
 Constrained by slowest node in a pod 
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Motivation 
Architecture 

Conclusion 
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 Worker execution optimization 
 Relaxing and Staging  filters  

 Pod filter partitioning strategies 
 Random vs Sorted 

 Prototype crawler applications 

4/29/2010 
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universe of all 
possible documents 

relaxed matches 

  Indexing is not always efficient  
 Relax filters to a less precise 

version  
 False positives now possible 
 Trade accuracy for reduced 

resource requirements  
exact 

matches 
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substring(“General Motors said on 
Wednesday that it had a positive cash 
flow of $1 billion in the six months 
after emerging from bankruptcy 
protection”) 

substring(“General Motors said on 
Wednesday”) that it had a positive cash 
flow of $1 billion in the six months 
after emerging from bankruptcy 
protection”). 



  Relaxing introduces false 
positives 
  A relaxed filter may accept too many 

documents 
  Solution: Optional second phase 

called staging 
  If a relaxed filter matches in first 

stage, only execute its full filter in 
second stage 

  Clean up false positives if cheap 
enough 

4/29/2010 
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regex(‘<script language="javascript"> eval
(unescape("%66%75%6e%63%74%69%6f%6e%20%.
{4}%28%.{4}%29%7b%76%61%72%20’) 

 Relaxing a malware regular expression 
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substring(‘<script language="javascript"> 
eval(unescape("%66%75%6e%63%74%69%6f%6e
%20%’)  
AND substring(‘%28%’)  
AND substring(‘%29%7b%76%61%72%20’) 

 Relaxing a malware regular expression 
 Relax regex into a conjunct of substrings 
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substring(‘<script language="javascript"> 
eval(unescape("%66%75%6e%63%74%69%6f%6e
%20%’)  
AND substring(‘%28%’)  
AND substring(‘%29%7b%76%61%72%20’) 

 Relaxing a malware regular expression 
 Relax regex into a conjunct of substrings 
 Relax conjunct into a single term  
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substring(‘<script language="javascript"> 
eval(unescape("%66%75%6e%63%74%69%6f%6e
%20%’)  

 Relaxing a malware regular expression 
 Relax regex into a conjunct of substrings 
 Relax conjunct into a single term  
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substring(‘<script language="javascript"> 
eval(unescape("%66%75%6e%63%74%69%6f%6e
%20%’)  

 Relaxing a malware regular expression 
 Relax regex into a conjunct of substrings 
 Relax conjunct into a single term  
 Relax long substring into short substring 
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 Relaxing a malware regular expression 
 Relax regex into a conjunct of substrings 
 Relax conjunct into a single term  
 Relax long substring into short substring 
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substring(‘<script language="javascript"> 
eval(unescape("%66%75%6e%63%74%69%6f%6e
%20%’)  

 Relaxing a malware regular expression 
 Relax regex into a conjunct of substrings 
 Relax conjunct into a single term  
 Relax long substring into short substring 
 Select relaxations carefully!  
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substring(‘<script language="javascript"> 
eval(unescape("%66%75%6e%63%74%69%6f%6e
%20%’) 

 Relaxing a malware regular expression 
 Relax regex into a conjunct of substrings 
 Relax conjunct into a single term  
 Relax long substring into short substring 
 Select relaxations carefully! 
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substring(‘75%6e%63%74%69%6f%6e%20%’) 

 Relaxing a malware regular expression 
 Relax regex into a conjunct of substrings 
 Relax conjunct into a single term  
 Relax long substring into short substring 
 Select relaxations carefully! 



 Naïve filter execution is not cost effective 
  Index filters to use memory instead of CPU 

 Each machines does more work 
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  Indexing is very memory intensive. 
  Relax filters for less memory consumption 

 Order of magnitude less memory used 
 Order of magnitude more filters on a worker 
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  Indexes for large filter sets 
are too big for a single 
machine 
  Partition filters and build 

indexes on subsets 

  Different strategies affect 
pod performance 
  Random: cheap and quick 
  Sorted: sharing efficiences 
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  Random filter partitioning has low throughput variance 
  Sorted partitioning (alphabetizing) improves most nodes’ 

throughput,  but has high variance.  
  Compensate for variance by blacklisting troublesome filters 

max random 
throughput 

max alpha 
throughput 

max alpha + 
blacklist  

throughput 
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 Copyright Violation/Plagiarism 
 Sentences from Wikipedia, AP, and Reuters articles 

 Web Malware Detection  
 Regexes from ClamAV web malware signatures 

 Vanity/Online Identity Service 
 Regexes generated from names in a university 

directory 

4/29/2010 
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  Applications tested against 3.68M web documents  
 Gathered by Nutch 0.9 crawler and seeded by DMOZ 

4/29/2010 
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Copyright	
   Malware	
   Identity	
  

# filters	
   251,657	
   3,128	
   10,622	
  
Relaxed-only	
   Doc Hit Rate	
   0.664%	
   45.4%	
   69.0%	
  

Throughput 
(docs/s)	
   8,535	
   8,534	
   7,244	
  

Relax+staged	
   Doc Hit Rate	
    0.016%	
   0.009% 13.1%	
  
Throughput 
(docs/s)	
   8,229 6,354 592 
# machines for 
100k docs/s	
   12.2	
   15.7	
   169	
  



Motivation 
Architecture 

Implementation and Evaluation 
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 We introduced the service, the architecture, 
and the implementation of the extensible 
crawler  
 Flexible filter language for efficiently filtering 

complex web data 
 Scalable and cost-efficient on commodity clusters 

architecture  
 Low latency to support real-time web 

applications 
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