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Abstract

Cloud-based services are an attractive deployment
model for user-facing applications like word processing
and calendaring. Unlike desktop applications, cloud ser-
vices allow multiple users to edit shared state concurrently
and in real-time, while being scalable, highly available,
and globally accessible. Unfortunately, these benefits
come at the cost of fully trusting cloud providers with
potentially sensitive and important data.

To overcome this strict tradeoff, we present SPORC, a
generic framework for building a wide variety of collabo-
rative applications with untrusted servers. In SPORC, a
server observes only encrypted data and cannot deviate
from correct execution without being detected. SPORC
allows concurrent, low-latency editing of shared state,
permits disconnected operation, and supports dynamic
access control even in the presence of concurrency. We
demonstrate SPORC’s flexibility through two prototype
applications: a causally-consistent key-value store and a
browser-based collaborative text editor.

Conceptually, SPORC illustrates the complementary
benefits of operational transformation (OT) and fork*
consistency. The former allows SPORC clients to execute
concurrent operations without locking and to resolve any
resulting conflicts automatically. The latter prevents a
misbehaving server from equivocating about the order of
operations unless it is willing to fork clients into disjoint
sets. Notably, unlike previous systems, SPORC can auto-
matically recover from such malicious forks by leveraging
OT’s conflict resolution mechanism.

1 Introduction

An emerging class of cloud-based collaborative services,
such as online document processing and calendaring, pro-
vides users with anywhere-available, real-time, and con-
current access to shared state. Their deployments on man-
aged cloud platforms enjoy global accessibility, high avail-
ability, fault tolerance, and elastic resource allocation and
scaling. Yet these benefits have come at the cost of having
a fully trusted server, creating a risk of privacy problems
due to server-side information leaks. The history of such
services is one rife with unplanned data disclosures and
malicious break-ins [24]. Indeed, the very centralization
of information makes cloud providers high value targets
for attack. Further, the behavior of service providers them-

selves is a source of users’ privacy angst, as privacy poli-
cies may be weakened due to market expediencies. Finally,
cloud providers face pressure from government agencies
world-wide to release information on demand [15].

This paper challenges the belief that applications must
sacrifice strong security and privacy to enjoy the bene-
fits of cloud deployment. We present a system, SPORC,
that offers managed cloud-based deployment for group
collaboration services, yet does require users to trust the
cloud provider to maintain data privacy or even to oper-
ate correctly. SPORC’s cloud servers see only encrypted
data, and clients will detect any deviation from correct
operation (e.g., adding, modifying, dropping, or reorder-
ing operations) and will recover from the error. Much
like SUNDR [24], SPORC bases its security and privacy
guarantees on the security of users’ cryptographic keys,
and not on the cloud provider’s good intentions nor on
some threshold-like protocol between servers [9] that is
susceptible to administrative or software attacks.

SPORC provides a generic collaboration service in
which users can create a document, modify its access con-
trol list, edit it concurrently, experience fully automated
merging of updates, and even perform these operations
while disconnected. The SPORC framework supports a
broad range of collaborative applications. Data updates
are encrypted before being sent to a cloud-hosted server.
The server assigns a total order to all operations and re-
distributes the ordered updates to clients. If a malicious
server drops or reorders updates, the SPORC clients can
detect the server’s misbehavior, switch to a new server,
restore a consistent state, and continue. The same mech-
anism that allows SPORC to merge correct concurrent
operations also enables it to transparently recover from
attacks that fork clients’ views.

From a conceptual distributed systems perspective,
SPORC demonstrates the benefit of combining opera-
tional transformation [11] and fork* consistency proto-
cols [23]. Operational transformation (OT) defines a
framework for executing lock-free concurrent operations
that both preserves causal consistency and converges to a
common shared state. It does so by transforming opera-
tions so they can be applied commutatively by different
clients, resulting in the same final state. While OT origi-
nated with decentralized applications using pairwise rec-
onciliation [11, 18], recent systems like Google Wave [44]
have used OT with a trusted central server that orders and
transforms clients’ operations. Fork* consistency, on the



other hand, was introduced as a consistency model for
interacting with an untrusted server: If the server causes
the views of two clients to diverge, the clients must either
never see each others’ subsequent updates or else identify
the server as faulty.

Recovering from a malicious fork is similar to recon-
ciling concurrent operations in the OT framework. Upon
detecting a fork, SPORC clients use OT mechanisms to
replay and transform forked operations, restoring a consis-
tent state. Previous applications of fork* consistency [23]
could only detect forks, but not resolve them.

This paper makes the following contributions:

§2 We identify and explore the conceptual connection
between operational transformation protocols and the
fork* consistency model, and use this connection to
motivate SPORC’s design.

§3 We describe SPORC’s framework and protocols for
real-time collaboration. SPORC provides security
and privacy against both an untrusted server that me-
diates communication and other clients that lack ac-
cess control permissions.

§4 We demonstrate how to support dynamic access con-
trol, which is challenging because SPORC supports
concurrent operations and offline editing.

§5 We describe how clients can detect and recover
from maliciously-instigated forks. We also present a
checkpoint mechanism that reduces saved client state
and minimizes the join overhead for new clients.

§6 We illustrate the extensibility of SPORC’s pluggable
data model by building both a key-value store and a
browser-based collaborative text editor. We imple-
ment these services as both stand-alone applications
and web services; the latter run in a browser, execute
in JavaScript (compiled from Java via GWT [12]),
and require no prior installation.

We evaluate SPORC’s performance in Section 7 before
discussing related work and concluding.

2 System Model
The purpose of SPORC is to allow a group of users who
trust each other to collaboratively edit some shared state,
which we call the document, with the help of an untrusted
server. SPORC is comprised of a set of client devices
that modify the document on behalf of particular users,
and a potentially-malicious server whose main role is to
impose a global order on those modifications. The server
receives updates from individual clients, orders them, and
then broadcasts them to the other clients. Access to the
document is limited to a set of authorized users, but each
user may be logged into arbitrarily many clients simul-
taneously (e.g., her desktop, laptop, and mobile phone).

Each client, even if it is controlled by the same user as
another client, has its own local view of the document that
must be synchronized with all other clients.

2.1 Goals
We designed SPORC with the following goals in mind:

Flexible framework for a broad class of collabora-
tive services. Because SPORC uses an untrusted server
which does not see application-level content, the server is
generic and can handle a broad class of applications. On
the client side, SPORC provides a library suitable for use
by a range of desktop and web-based applications.

Propagate modifications quickly. When a client is
connected to the network, its changes to the shared state
should propagate quickly to all other clients so that clients’
views are nearly identical. This property makes SPORC
suitable for building collaborative applications requiring
nearly real-time updates, such as collaborative text editing
and instant messaging.

Tolerate slow or disconnected networks. To allow
clients to edit the document while offline or while experi-
encing high network latency, clients in SPORC update the
document optimistically. Every time a client generates a
modification, the client applies it immediately to its local
state, and only later sends it to the server for redistribu-
tion. As a result, clients’ local views of the document will
invariably diverge, and SPORC must be able to resolve
these divergences automatically.

Keep data confidential from the server and unau-
thorized users. Since the server is untrusted, document
updates must be encrypted before being sent to the server.
For efficiency, the system should use symmetric-key en-
cryption. SPORC must provide a way to distribute this
symmetric key to every client of authorized users. When
a document’s access control list changes, SPORC must
ensure that newly added users can decrypt the entire docu-
ment, and that removed users cannot decrypt any updates
subsequent to their expulsion.

Detect a misbehaving server. Even without access to
document plaintext, a malicious server could still do signif-
icant damage by deviating from its assigned role. It could
attempt to add, drop, alter, or delay clients’ (encrypted)
updates, or it could show different clients inconsistent
views of the document. SPORC must give clients a means
to quickly detect these kinds of misbehavior.

Recover from malicious server behavior. If clients
detect that the server is misbehaving, clients should be
able to failover to a new server and resume execution.
Since a malicious server could cause clients to have incon-
sistent local state, SPORC must provide a mechanism for
automatically resolving these inconsistencies.

To achieve these goals, SPORC builds on two concep-
tual frameworks: operational transformation and fork*
consistency.



2.2 Operational Transformation
Operational Transformation (OT) [11] provides a general
model for synchronizing shared state, while allowing each
client to apply local updates optimistically. In OT, the
application defines a set of operations from which all
modifications to the document are constructed. When
clients generate new operations, they apply them locally
before sending them to others. To deal with the conflicts
that these optimistic updates inevitably incur, each client
transforms the operations it receives from others before
applying them to its local state. If all clients transform
incoming operations appropriately, OT guarantees that
they will eventually converge to a consistent state.

Central to OT is an application-specific transformation
function T (·) that allows two clients whose states have
diverged by a single pair of conflicting operations to re-
turn to a consistent, reasonable state. T (op1, op2) takes
two conflicting operations as input and returns a pair of
transformed operations (op′1, op

′
2), such that if the party

that initially did op1 now applies op′2, and the party that
did op2 now applies op′1, the conflict will be resolved.

To use the example from Nichols et al. [30], sup-
pose Alice and Bob both begin with the same local state
“ABCDE”, and then Alice applies op1 = ‘del 4’ locally
to get “ABCE”, while Bob performs op2 = ‘del 2’ to
get “ACDE”. If Alice and Bob exchanged operations and
executed each others’ naively, then they would end up
in inconsistent states (Alice would get “ACE” and Bob
“ACD”). To avoid this problem, the application supplies the
following transformation function that adjusts the offsets
of concurrent delete operations:

T (del x,del y) =

 (del x− 1,del y) if x > y
(del x,del y − 1) if x < y

(no-op,no-op) if x = y

Thus, after computing T (op1, op2), Alice will apply
op′2 =‘del 2’ as before but Bob will apply op′1 = ‘del 3’,
leaving both in the consistent state “ACE”.

Given this pair-wise transformation function, clients
that diverge in arbitrarily many operations can return to a
consistent state by applying the transformation function
repeatedly. For example, suppose that Alice has optimisti-
cally applied op1 and op2 to her local state, but has yet
to send them to other clients. If she receives a new op-
eration opnew, Alice must transform it with respect to
both op1 and op2: She first computes (op′new, op′1) ←
T (opnew, op1), and then (op′′new, op′2)← T (op′new, op2).
This process yields op′′new, an operation that Alice has
“transformed past” her two local operations and can now
apply to her local state.

Throughout this paper, we use the notation op′ ←
T (op, 〈op1, . . . , opn〉) to denote transforming op past a
sequence of operations 〈op1, . . . , opn〉 by iteratively ap-

plying the transformation function.1 Similarly, we de-
fine 〈op′1, . . . , op′n〉 ← T (〈op1, . . . , opn〉, op) to repre-
sent transforming a sequence of operations past a single
operation.

Operational transformation can be applied in a wide
variety of settings, as operations, and the transforms on
them, can be tailored to each application’s requirements.
For a collaborative text editor, operations may contain
inserts and deletes of character ranges at specific cursor
offsets, while for a causally-consistent key-value store,
operations may contain lists of keys to update or remove.
In fact, we have implemented both such systems on top of
SPORC, which we describe further in Section 6.

For many applications, with a carefully-chosen trans-
formation function, OT is able to automatically return
divergent clients to a state that is not only consistent, but
semantically reasonable as well. But for some applica-
tions, such as source-code version control, semantic con-
flicts must be resolved manually. OT can support such
applications through the choice of a transformation func-
tion that does not try to resolve the conflict, but instead
inserts an explicit conflict marker into the history of oper-
ations. A human can later examine the marker and resolve
the conflict by issuing new writes. These write operations
will supercede the conflicting operations, provided that the
system preserves the global order of committed operations
and the partial order of each client’s operations. Section 3
describes how SPORC provides these properties.

While OT was originally proposed for decentralized n-
way synchronization between clients, many prominent OT
implementations are server-centric, including Jupiter [30]
and Google Wave [44]. They rely on the server to resolve
conflicts and to maintain consistency, and are architec-
turally better suited for web services. On the flip side, a
misbehaving server can compromise the confidentiality,
integrity, and consistency of the shared state.

Later, we describe how SPORC adapts these server-
based OT architectures to provide security against a mis-
behaving server. At a high level, SPORC has each client
simulate the transformations that would have been applied
by a trusted OT server, using the server only for ordering.
But we still need to protect against inconsistent orderings,
for which we leverage fork* consistency techniques [23].

2.3 Fork* Consistency
To prevent a malicious server from forging or modifying
clients’ operations, clients in SPORC digitally sign all
their operations with their user’s private key. This is not
sufficient for correctness, however: a misbehaving server
could still equivocate and present different clients with
divergent views of the history of operations.

1Strictly speaking, T always returns a pair of operations. For sim-
plicity, however, we sometimes write T as returning a single operation,
especially when the other is unchanged, as in our “delete char” example.



To defend against server equivocation, SPORC clients
enforce fork* consistency [23].2 In fork*-consistent sys-
tems, clients share information about their individual
views of the history by embedding it in every operation
they send. As a result, if clients to whom the server has
equivocated ever communicate, they will discover the
server’s misbehavior. The server can still divide its clients
into disjoint groups and only tell each client about oper-
ations by others in its group. But, once the server has
forked two groups in this way, it cannot tell a member
of one group about an operation submitted by another
group’s members without risking detection.

As in BFT2F [23], each SPORC client enforces fork*
consistency by maintaining a hash chain over its view of
the committed history. In this context, a hash chain is a
method of incrementally computing the hash of a list of
elements. More specifically, if op1, . . . , opn are the opera-
tions in the history, h0 is a constant initial value, and hi is
the value of the hash chain over the history up to opi, then
hi = H(hi−1||H(opi)), where H(·) is a cryptographic
hash function and || denotes concatenation. When a client
with history up to opn submits a new operation, it includes
hn in its message. On receiving the operation, another
client can check whether the included hn matches its own
hash chain computation over its local history up to opn.
If they do not match, the client knows that the server has
equivocated.

2.4 The Benefits of Having a Server
SPORC uses a central untrusted server, but the server’s
sole purpose is to order and store client-generated opera-
tions. This limited role may lead one to ask whether the
server should be removed, leading to a completely peer-to-
peer design. Indeed, many group collaboration systems,
such as Bayou [43] and Network Text Editor [17], employ
decentralized architectures. Decentralized designs are a
poor fit, however, for applications in which a user needs a
timely notification that her operation has been committed
and will not be overridden by another’s (not yet received)
operation. For example, to schedule a meeting room, an
online user should be able to quickly determine whether
her reservation succeeded, without worrying if an offline
client’s request will override hers. Yet this is difficult to
achieve without waiting to hear from all (or at least a quo-
rum of) other clients, which poses a problem when clients
are regularly offline. In reaction, Bayou delegates com-

2Fork* consistency is a weaker variant of an earlier model called fork
consistency [27]. They differ in that under fork consistency, a pair of
clients only needs to exchange one message to detect server equivocation,
whereas under fork* consistency, they may need to exchange two. For
OT systems like ours, this distinction makes little difference because
clients constantly exchange small messages. On the other hand, fork*
consistency permits a one-round protocol to submit operations, rather
than two. Beyond efficiency, this also ensures that a crashed client cannot
prevent the system from making progress.

mits to a (statically) designated, trusted “primary” peer,
which is little different from having a server.

SPORC, on the other hand, only requires an untrusted
server for globally ordering operations. Thus, it can lever-
age the benefits of a cloud deployment—high availability
and global accessibility—to achieve timely commits. We
show in Section 4.2 how SPORC’s centralized server also
helps support dynamic access control and key rotation,
even in the face of concurrent membership changes.

2.5 Deployment and Threat Model
Deployment Assumptions. While most of the paper dis-
cusses the SPORC protocol in terms of a single server and
a single document, we assume that a cloud-based SPORC
deployment would manage large numbers of users and
documents by replicating functionality and partitioning
state over many servers. Each document in SPORC can be
managed independently, leading naturally to the shared-
nothing architectures [36] already common to scalable
cloud services.

For a client to recover from a misbehaving server, we
assume there exists some alternative (untrusted) server
to switch to after a client detects faulty behavior. These
backup servers may belong to the same or different admin-
istrative domains as the original, depending upon the type
of faults that a SPORC deployment expects to encounter.

Note that even if malicious (Byzantine) behavior among
cloud servers is not a primary concern, this strong threat
model also covers weaker non-crash failures related to
server misconfiguration, Heisenbugs, or “split-brain” par-
titioned behavior. In all cases, failover and recovery is
client driven. Crash failures, unlike Byzantine failures,
would not result in forks and could be handled by tra-
ditional fault-tolerance techniques (e.g., primary/backup
replication) already employed in cloud services.

Threat Model. SPORC makes the following security
assumptions:

Server: The server is potentially malicious, and a mis-
behaving server may be able to prevent progress, but it
must not be able to corrupt the clients’ shared state. A
server may fork clients’ states, but only within the con-
fines of the fork* consistency model. If clients are able to
communicate either in-band or out-of-band, server equiv-
ocation will be detected promptly by at least one client.

The server may be able to learn which users and clients
are sharing a document, but it must not learn what is in the
document or even the contents of the individual operations
that the clients submit. Since the server has access to the
size and timing of clients’ operations, it may be able to
glean some information about the document via traffic
analysis. Traffic analysis is made more difficult by the
fact that encrypted operations do not even reveal which
portions of the shared state they modify. Neverthless, the
complete mitigation of traffic analysis is beyond the scope



of this work, but it would likely involve padding the length
of operations and introducing cover traffic.

To attack availability, the server may arbitrarily erase
or refuse to return any of the encrypted data that it stores.
To mitigate this threat, the encrypted data could be repli-
cated on servers in other administrative domains. More-
over, each client could replicate its own local state on
cloud servers other than the main SPORC server. Notably,
SPORC cannot guarantee recovery from every possible
fork, unless every client stores every operation that it has
seen either locally or remotely.

Clients: If a client is logged in as a particular user, that
client is trusted to exercise the privileges granted to that
user (e.g., to see the state, modify it, or modify access
privileges). Otherwise, clients are untrusted, and they
should not be able to see the document, or to modify the
document or its access control list, even if they collude
with each other or with the server.

User authentication and keys: We assume that each
user has a secure public/private key pair, and that clients
have a secure way to verify the public key of other users.

Application code: We assume the presence of a code
authentication infrastructure that can verify that the appli-
cation code run by clients is genuine. This mechanism
might rely on code signing or on HTTPS connections to a
trusted server (different from the untrusted server used as
part of SPORC’s protocols).

3 System Design

This section describes SPORC’s design in more detail, in-
cluding its synchronization mechanisms and the measures
that clients implement to detect a malicious server that
may modify, reorder, duplicate, or drop operations. This
section assumes that the set of users and clients editing a
given document is fixed; we consider dynamic member-
ship in Section 4.

3.1 System Overview
The parties and stages involved with SPORC operations
are shown in Figure 1. At a high level, the local state of
a SPORC application is synchronized between multiple
clients, using a server to collect updates from clients, order
them, then redistribute the client updates to others. There
are four types of state in the system.

(1) The local state is a compact representation of the
client’s current view of the document (e.g., the most recent
version of a collaborative-edited text).

(2) The encrypted history is the set of operations stored
at and ordered by the server. The payloads of operations
that change the contents of the document are encrypted
to preserve confidentiality. The server orders the opera-
tions oblivious to their payloads but aware of the previous
operations on which they causally depend.
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Figure 1: SPORC architecture and synchronization steps

(3) The committed history is the official set of (plain-
text) operations shared among all clients, as ordered by
the server. Clients derive this committed history from
the server’s encrypted history by transforming operations’
payloads to reflect any changes that the server’s ordering
might have caused.

(4) A client’s pending queue is an ordered list of the
client’s local operations that have already been applied
to its local state, but that have yet to be committed (i.e.,
assigned a sequence number by the server and added to
the client’s committed history).

SPORC synchronizes clients’ local state for a partic-
ular document using the following steps, also shown in
Figure 1. This section restricts its consideration to interac-
tions with a static membership and well behaved server;
we relax these restrictions in the next two sections, re-
spectively. The flow of local operations to the server is
illustrated by dashed blue arrows; the flow of operations
received from the server is shown by solid red arrows.

1. A client application generates an operation, applies
it to its local state immediately, and then places it at
the end of the client’s pending queue.

2. If the client does not currently have any operations
under submission, it takes its oldest queued operation
yet to be sent, op, assigns it a client sequence number
(clntSeqNo), embeds in it the global sequence number
of the last committed operation (prevSeqNo) along
with the corresponding hash chain value (prevHC),
encrypts its payload, digitally signs it, and transmits
it to the server. (As an optimization, if the client
has multiple operations in its pending queue, it can
submit them as a single batched operation.)

3. The server adds the client-submitted op to its en-
crypted history, assigning it the next available global
sequence number (seqNo). The server forwards op
with this seqNo to all the clients participating in the
document.

4. Upon receiving an encrypted operation op, the client
verifies its signature (V) and checks that its clntSe-



qNo, seqNo, and prevHC fields have the expected
values. If these checks succeed, the client decrypts
the payload (D) for further processing. If they fail,
the client concludes that the server is malicious.

5. Before adding op to its committed history, the client
must transform it past any other operations that had
been committed since op was generated (i.e., all those
with global sequence numbers greater than op’s prev-
SeqNo). Once op has been transformed, the client
appends op to the end of the committed history.

6. If the incoming operation op was one that the client
had initially sent, the client dequeues the oldest ele-
ment in the pending queue (which will be the uncom-
mitted version of op) and prepares to send its next
operation. Otherwise, the client transforms op past
all its pending operations and, conversely, transforms
those operations with respect to op.

7. The client returns the transformed version of the in-
coming operation op to the application. The applica-
tion then applies op to its local state.

SPORC maintains the following invariants with respect to
the system’s state:

Local Coherence: A client’s local state is equivalent
to the state it would be in if, starting with an initial empty
document, it applied, in order, all of the operations in its
committed history followed by all of the operations in its
pending queue.

Fork* Consistency: If the server is well behaved, all
clients’ committed histories are linearizable (i.e., for every
pair of clients, one client’s committed history is equal to
or a prefix of the other client’s committed history). If the
server is faulty, however, clients’ committed histories may
be forked [23].

Client-Order Preservation: The order that a non-
malicious server assigns to operations originating from
a given client must be consistent with the order that the
client assigned to those operations.

3.2 Operations
SPORC clients exchange two types of operations: docu-
ment operations, which represent changes to the content
of the document, and meta-operations, which represent
changes to document metadata such as the document’s
access control list. Meta-operations are sent to the server
in the clear, but the payloads of document operations are
encrypted under a symmetric key that is shared among
all of the clients but is unknown to the server. (See Sec-
tion 4.1 for a description of how this key is chosen and
distributed.) In addition, every operation is labeled with
the name of the user that created it and is digitally signed
by that user’s private key. All operations also contain a

unique client ID (clntID) that identifies from which of the
user’s client machines it came.

3.3 The Server’s Limited Role
Because the SPORC server is untrusted, its role is limited
to ordering and storing the operations that clients submit,
most of which are encrypted. The server stores the opera-
tions in its encrypted history so that new clients joining the
document or existing clients that have been disconnected
can request from the server the operations that they are
missing. This storage function is not essential, however,
and in principle it could be handled by a different party.

Notably, since the server does not have access to the
plaintext of document operations, the same generic server
implementation can be used for any application that uses
our protocol regardless of the kind of document being
synchronized.

3.4 Sequence Numbers and Hash Chains
SPORC clients use sequence numbers and a hash chain to
ensure that operations are properly serialized and that the
server is well behaved. Every operation has two sequence
numbers: a client sequence number (clntSeqNo) which is
assigned by the client that submitted the operation, and
a global sequence number (seqNo) which is assigned by
the server. On receiving an operation, a client verifies
that the operation’s clntSeqNo is one greater than the last
clntSeqNo seen from the submitting client, and that the op-
eration’s seqNo is one greater than the last seqNo that the
receiving client saw. These sequence number checks en-
force the “client order preservation” invariant and ensure
that there are no gaps in the sequence of operations.

When a client uploads an operation opnew to the server,
the client sets opnew’s prevSeqNo field to the global se-
quence number of the last committed operation, opn, that
the client knows about. The client also sets opnew’s pre-
vHC field to the value of the client’s hash chain over the
committed history up to opn. A client who receives opnew

compares its prevHC with the client’s own hash chain com-
putation up to opn. If they match, the recipient knows that
its committed history is identical to the sender’s committed
history up to opn, thereby guaranteeing fork* consistency.

A misbehaving server cannot modify the prevSeqNo or
prevHC fields, because they are covered by the submitting
client’s signature on the operation. The server can try
to tell two clients different global sequence numbers for
the same operation, but this will cause the two clients’
histories—and hence their future hash chain values—to
diverge, and it will eventually be detected.

To simplify the design, each SPORC client has at most
one operation “in flight” at any time: only the operation
at the head of a client’s pending queue can be sent to the
server. Among other benefits, this rule ensures that oper-
ations’ prevSeqNo and prevHC values will always refer



to operations that are in the committed history, and not
to other operations that are “in flight.” This restriction
could be relaxed, but only at considerable cost in complex-
ity. For similar reasons, other OT-based systems such as
Google Wave adopt the same rule [44].

Prohibiting more than one in-flight operation per client
is less restrictive than it might seem, as operations can be
combined or batched. Like Wave, SPORC includes an
application-specific composition function, which consoli-
dates two operations into one. This can be used iteratively
to combine a sequence of operations into a single one.
Further, it is straightforward to batch multiple operations
into a single logical operation, which is then submitted as
a unit. Because operations can be composed or batched, a
client can empty its pending queue every time it gets an
opportunity to submit an operation to the server.

3.5 Resolving Conflicts with OT
Once a client has validated an operation received from the
server, the client must use OT to resolve the conflicts that
may exist between the new operation and other operations
in the committed history and pending queue. These con-
flicts might have arisen for two reasons. First, the server
may have committed additional operations since the new
operation was generated. Second, the receiving client’s lo-
cal state might reflect uncommitted operations that reside
on the client’s pending queue but that other clients do not
yet know about.

Before a client appends an incoming operation opnew

to its committed history, it compares opnew’s prevSeqNo
value with the global sequence number of the last com-
mitted operation. The prevSeqNo field indicates the last
committed operation that the submitting client knew about
when it uploaded opnew. Thus, if the values match, the
client knows that no additional operations have been added
to its committed history since opnew was generated, and
the new operation can be appended directly to the commit-
ted history. But if they do not match, then other operations
were committed since opnew was sent, and opnew needs
to be transformed past each of them. For example, if
opnew has a prevSeqNo of 10, but was assigned global
sequence number 14 by the server, then the client must
compute op′new ← T (opnew, 〈op11, op12, op13〉) where
〈op11, op12, op13〉 are the intervening committed opera-
tions. Only then can the resulting transformed operation
op′new be appended to the committed history. After ap-
pending the operation, the client updates the hash chain
computed over the committed history so that future incom-
ing operations can be validated.

At this point, if op′new is one of the receiving client’s
own operations that it had previously uploaded to the
server (or a transformed version of it), it will necessarily
match the operation at the head of the pending queue.
Since op′new has now been committed, its uncommitted

version can be retired from the pending queue, and the
next pending operation can be submitted to the server.
Furthermore, since the client has already optimistically
applied the operation to its local state even before sending
it to the server, the client does not need to apply op′new

again, and nothing more needs to be done.
If op′new is not one of the client’s own operations, how-

ever, the client must perform additional transformations in
order to reestablish the “local coherence” invariant, which
states that the client’s local state is equal to the in-order
application of its committed history followed by its pend-
ing queue. First, in order to obtain a version of op′new that
it can apply to its local state, the client must transform
op′new past all of the operations in its pending queue. This
step is necessary because the pending queue contains oper-
ations that the client has already applied locally, but have
not yet been committed and, therefore, were unknown to
the sender of op′new.

Second, the client must transform the entire pend-
ing queue with respect to op′new to account for the
fact that op′new was appended to the committed history.
More specifically, the client computes 〈op′1, . . . , op′m〉 ←
T (〈op1, . . . , opm〉, op′new) where 〈op1, . . . , opm〉 is the
pending queue. This transformation has the effect of push-
ing the pending queue forward by one operation to make
room for the newly extended committed history. The op-
erations on the pending queue need to stay ahead of the
committed history because they will receive higher global
sequence numbers than any of the currently committed
operations. Furthermore, by transforming its unsent oper-
ations in response to updates to the document, the client
reduces the amount of transformation that other clients
will need to do when they eventually receive its operations.

4 Membership Management

Document membership in SPORC is controlled at the
level of users, each of which is associated with a public-
private key pair. When a document is first created, only the
user that created it has access. Subsequently, privileged
users can change the document’s access control list (ACL)
by submitting ModifyUserOp meta-operations, which
get added to the document’s history (covered by its hash
chain), much like normal operations.

A user can be given one of three privilege levels:
reader, which entitles the user to decrypt the document but
not to submit new operations; editor, which entitles the
user to read the document and to submit new operations
(except those that change the ACL); and administrator,
which grants the user full access, including the ability
to invite new users and remove existing users. Because
ModifyUserOps are not encrypted, a non-malicious
server will immediately reject operations from users with
insufficient privileges. But because the server is untrusted,



every client maintains its own copy of the ACL, based
on the history’s ModifyUserOps, and refuses to apply
operations that came from unauthorized users.

4.1 Encrypting Document Operations
To prevent eavesdropping by the server or unapproved
users, the payloads of document operations are encrypted
under a symmetric key known only to the document’s
current members. More specifically, to create a new docu-
ment, the creator generates a random AES key, encrypts it
under her own public key, and then writes the encrypted
key to the document’s initial create meta-operation. To add
new users, an administrator submits a ModifyUserOp
that includes the document’s AES key encrypted under
each of the new users’ public keys.

If users are removed, the AES key must be changed
so that the removed users will not be able to decrypt sub-
sequent operations. To do so, an administrator picks a
new random AES key, encrypts it under the public keys
of all the remaining participants, and then submits the
encrypted keys as part of the ModifyUserOp.3 This
meta-operation also includes an encryption of the old AES
key under the new AES key. This enables later users to
learn earlier keys and thus decrypt old operations, without
requiring the operations to be re-encrypted.

SPORC’s model ensures proper access control over
operations, based on how it tracks potential causality
through prevSeqNo dependencies. Operations concurrent
to a ModifyUserOp removal may be ordered before
it and remain accessible to the user. However, once a
client sees the removal meta-operation in its committed
history any subsequent operation the client submits will
be inaccessible to the removed user.

4.2 Barrier Operations
Concurrency also poses a challenge to membership man-
agement. Consider the situation when two clients con-
currently issue ModifyUserOps that both attempt to
change the current symmetric key. If the server naively
scheduled one after the other, then the continuous chain
of old keys encrypted under new ones would be broken.

To address situations like this, we introduce a primitive
called a barrier operation. When the server receives an
operation that is marked “barrier” and assigns it global
sequence number b, the server requires that every sub-
sequent operation have a prevSeqNo ≥ b. Subsequent
operations that do not are rejected and must be revised and
resubmitted with a later prevSeqNo. In this way, the server

3In our current implementation, the size of a ModifyUserOp may
be linear in the number of users participating in the document, because
the operation may contain the current AES key encrypted under each
of the users’ RSA public keys. An optimization to achieve constant-
sized ModifyUserOps could instead use a space-efficient broadcast
encryption scheme [6].

can force all future operations to depend on the barrier
operation.4

Let us reconsider the example of two concurrent
ModifyUserOps, op1 and op2, that are marked as barri-
ers. Suppose that the server received op1 first and assigned
it sequence number b. Since the operations were submit-
ted concurrently, op2’s prevSeqNo will necessarily be less
than b, and op2 will be rejected. The client attempting to
send op2 must wait until it receives op1, at which time it
will adjust op2 to depend on this operation before resub-
mitting (i.e., encrypt op1’s key under its new key, and set
op2’s prevSeqNo ≥ b). As a result, the chain of old keys
encrypted under new ones will be preserved.

Barrier operations have uses beyond membership man-
agement. For example, as described next, they are useful
in implementing checkpoints on the history.

5 Extensions
This section describes extensions to the basic SPORC
protocols: supporting checkpoints to reduce the size re-
quirements for storing the committed history (Section 5.1),
detecting forks through out-of-band communication (Sec-
tion 5.2), and recovering from forks by replaying and pos-
sibly transforming forked operations (Section 5.3). Our
current prototype does not yet implement these extensions,
however.

5.1 Checkpoints
In order to reach a document’s latest state, a new client in
our current implementation must download and apply the
entire history of committed operations. It would be more
efficient for a new client to instead download a check-
point of operations—a compact representation of the doc-
ument’s state, akin to each client’s local state—and then
only apply individual committed operations since the last
checkpoint. Much as SPORC servers cannot transform
operations, they similarly cannot perform checkpoints;
SPORC once again has individual clients play this role.

To support checkpoints, each client maintains a com-
pacted version of the committed history up to the most
recent barrier operation. When a client is ready to upload
a checkpoint to the server, it encrypts this compacted his-
tory under the current document key. It then creates a new
CheckpointOp meta-operation containing the hash of
the encrypted checkpoint data and submits it into the his-
tory. Requiring the checkpoint data to end in a barrier
operation ensures that clients that later use the checkpoint
will be able to ignore the history before the barrier without
having to worry that they will need to perform OT transfor-
mations involving that old history. After all, no operation

4To prevent a malicious server from violating the rules governing
barrier operations, an operation’s “barrier” flag is covered by the opera-
tion’s signature, and all clients verify that the server is handling barrier
operations correctly.



after a barrier can depend on an operation before it. If the
most recent barrier is too old, the client can submit a new
null barrier operation before creating the checkpoint.5

Checkpoints raise new security challenges, however. A
client that lacks the full history cannot verify the hash
chain all the way back to the document’s creation. It can
verify that the operations it has chain together correctly,
but the first operation in its history (i.e., the barrier op-
eration) is “dangling,” and its prevHC value cannot be
verified. This is not a problem if the client knows in
advance that the CheckpointOp is part of the valid his-
tory, but this is difficult to verify. The CheckpointOp
will be signed by a user, and users who have access to the
document are assumed to be trusted; but there must be a
way to verify that the signing user had permission to ac-
cess the document at the time the checkpoint was created.
Unfortunately, without access to a verifiable history of
individual ModifyUserOps going back the beginning
of the document, a client deciding whether to accept a
checkpoint has no way to be certain of which users were
actually members of the document at any given time.

To address these issues, we propose that the server and
clients maintain a meta-history, alongside the committed
history, that is comprised solely of meta-operations. Meta-
operations are included in the committed history as before,
but each one also has a prevMetaSeqNo pointer to a prior
element of the meta-history along with a corresponding
prevMetaHC field. Each client maintains a separate hash
chain over the meta-history and performs the same consis-
tency checks on the meta-history that it performs on the
committed history.

When a client joins, before it downloads a check-
point, it requests the entire meta-history from the server.
The meta-history provides the client with a fork* con-
sistent view of the sequence of ModifyUserOps and
CheckpointOps that indicates whether the check-
point’s creator was an authorized user when the checkpoint
was created. Moreover, the cost of downloading the entire
meta-history is likely to be low because meta-operations
are rare relative to document operations.

5.2 Checking for Forks Out-of-Band
Fork* consistency does not prevent a server from forking
clients’ state, as long as the server never tells any member
of one fork about any operation done by a member of an-
other fork. To detect such forks, clients can exchange state
information out-of-band, for example, by direct socket

5Having the checkpoint data end in an earlier barrier operation
is better than making CheckpointOps into barriers themselves. If
CheckpointOps were barriers, then either the client making the check-
point would have to “lock” the history to prevent new operations from
being admitted before the checkpoint was uploaded, or the system would
have to reject checkpoints that did not reflect the latest state, which could
potentially lead to livelock.

connections, email, instant messaging, or posting on a
shared server or DHT service.

Clients can exchange messages of the form 〈c, d, s, hs〉,
asserting that in client c’s view of document d, the hash
chain value as of sequence number s is equal to hs. On
receiving such a message, a client compares its own hash
chain value at sequence number s with hs, and if the
values differ, it knows a fork has occurred. If the recipient
does not yet have operations up to sequence number s, it
requests them from the server; a well behaved server will
always be able to supply the missing operations.

These out-of-band messages should be digitally signed
to prevent forgery. To prevent out-of-band messages from
leaking information about which clients are collaborat-
ing on a document, and to prevent a client from falsely
claiming that it was invited into the document by a forked
client, the out-of-band messages should be encrypted and
MACed with a separate set of symmetric keys that are
known only to nodes that have been part of the document.6

These keys might be conveyed in the first operation of the
document’s history.

5.3 Recovering from a Fork
A benefit of combining OT and fork* consistency is that
we can use OT to recover from forks. OT is well suited
to this task because, in normal operation, OT clients are
essentially creating small forks whenever they optimisti-
cally apply operations locally, and resolving these forks
when they transform operations to restore consistency. In
this section, we sketch an algorithm that a pair of forked
clients can use to merge their divergent histories into a
consistent whole. This pairwise algorithm can be repeated
as necessary to resolve forks involving multiple clients, or
multi-way forks.

The basic idea of the algorithm is that the two clients
will abandon the malicious server and agree on a new
one. Both clients will roll back their histories to their last
common point before the fork, and one of them will upload
the common history, up to the fork point, to the new server.
Finally, each client will resubmit the operations that it
saw after the fork. OT will ensure that these resubmitted
operations are merged safely so that both nodes end up in
the same state.

The situation becomes more complicated if the same
operation appears in both histories. We cannot just remove
the duplicate because later operations in the sequence may
depend on it. Instead, we must cancel it out. To make
this possible, we require that all operations be invertible:

6A client falsely claiming to have been invited into the document
in another fork will eventually be detected when the other clients try
to recover from the (false) fork. However, this is expensive so we
would prefer to avoid it. By protecting the out-of-band messages with
symmetric keys known only to clients who have been in the document at
some point, we reduce the set of potential liars substantially.



we must be able to construct an inverse operation op−1

such that applying op followed by op−1 results in a no-
op. This is often easy to do in practice by having each
operation store enough information about the prior state
to determine what the inverse should be. For example, a
delete operation can store the information that was deleted,
enabling the creation of an insert operation as the inverse.

To cancel each duplicate, we cannot simply splice its
inverse into the history right after it for the same reason
that we cannot just remove the duplicate. Instead, we
compute the inverse operation and then transform it past
all of the operations following the duplicate. This process
results in an operation that has the effect of canceling out
the duplicate when appended to the end of the sequence.

6 Implementation

SPORC provides a framework for building collaborative
applications that need to synchronize different kinds of
state between clients. It consists of a generic server im-
plementation and client-side libraries that implement the
SPORC protocol, including the sending, receiving, en-
cryption, and transformation of operations, as well as the
necessarily consistency checks and document membership
management. To build applications within the SPORC
framework, a developer only needs to implement client-
side functionality that (i) defines a data type for SPORC
operations, (ii) defines how to transform a pair of opera-
tions, and (iii) defines how to combine multiple document
operations into a single one. The server need not be modi-
fied, as it always deals with operations on encrypted data.

6.1 Variants
We implemented two variants of SPORC: a command-line
version in which both client and server are stand-alone
applications, and a web-based version with a browser-
based client and a Java servlet. The command-line ver-
sion, which we use for later microbenchmarks, is written
in approximately 5500 lines of Java code (per SLOC-
Count [46]) and, for network communication, uses the
socket-based RPC library in the open-source release of
Google Wave [16]. Because the server’s role is limited to
ordering and storing client-supplied operations, its basic
implementation is simple and only requires approximately
300 lines of code.

The web-based version shares the majority of its code
with the command-line variant. The server just encap-
sulates the command-line server functionality in a Java
servlet. The client consists almost entirely of JavaScript
code that was automatically generated using the Java-to-
JavaScript compiler included with the Google Web Toolkit
(GWT) [12]. Network communication uses a combina-
tion of the GWT RPC framework, which wraps browser
XmlHttpRequests, and the GWTEventService [37],

which allows the server to push messages to the browser
asynchronously through a long-lived HTTP connection
(the so-called “Comet” style of web programming). This
prototype could be extended with HTML5’s offline stor-
age to provide disconnected operation.

The client’s use cryptographic module was its only
component that could not be translated to JavaScript.
JavaScript remains too slow to implement public key cryp-
tography efficiently, and browsers lack both secure storage
for cryptographic keys and a secure pseudorandom num-
ber generator for key generation. To work around these
limitations, we encapsulate our cryptographic module in a
Java applet and implement JavaScript-to-Java communica-
tion using the LiveConnect API [28] (a strategy employed
in [2, 47]). Our experience suggests it would be beneficial
for browsers to provide a JavaScript API that supported
basic cryptographic primitives.

6.2 Building SPORC Applications
To demonstrate the usefulness of our framework, we
built two prototype applications: a causally-consistent
key-value store and a web-based collaborative text editor.
The key-value store keeps a simple dictionary—mapping
strings to strings—synchronized across a set of partici-
pating clients. To implement it, we defined a data type
that represents a list of keys to update or remove. We
wrote a simple transformation function that implements a
“last writer wins” policy, as well as a composition function
that merges two lists of key updates in a straightforward
manner. Overall, the application-specific portion of the
key-value store only required 280 lines of code.

The collaborative editor allows multiple users to modify
a text document simultaneously via their web browsers
and see each other’s changes in near real-time. It pro-
vides a user experience similar to Google Docs [14] and
EtherPad [13], but, unlike those services, it does not re-
quire a trusted server. To implement it, we were able to
reuse the data types and the transformation and compo-
sition functions from the open-source release of Google
Wave. Although Wave is a server-centric OT system with-
out SPORC’s level of security and privacy, we were able
to adapt its components for our framework with only 550
lines of wrapper code.

7 Experimental Evaluation

The user-facing collaborative applications for which
SPORC was designed—e.g., word processing, calendar-
ing, and instant messaging—require latency that is low
enough for human users to see each others’ updates in
real-time. But unlike file or storage systems, their primary
goal is not high throughput. In this section, we present
the results of several microbenchmarks of our Java-based



(a) Unloaded key-value store

(b) Unloaded text editor

Figure 2: Latency of SPORC with a single client writer

command-line version, to demonstrate SPORC’s useful-
ness for this class of applications.

We performed our experiments on a cluster of five com-
modity machines, each with eight 2.3 GHz AMD Opteron
cores and 8 GB of RAM, that were connected by gigabit
switched Ethernet. In each of our experiments, we ran a
single server instance on its own machine, along with vary-
ing numbers of client instances. To scale our system to
moderate numbers of clients, in many of our experiments,
we ran multiple client instances on each machine. We ran
all the experiments under the OpenJDK Java VM (version
IcedTea6 1.6). For RSA signatures, however, we used
the Network Security Services for Java (JSS) library from
the Mozilla Project [29] because, unlike Java’s default
cryptography library, it is implemented in native code and
offers considerably better performance.
Latency. To measure SPORC’s latency, we conducted
three minute runs with between one and sixteen clients for
both key-value and text editor operations. We tested our
system under both low-load conditions, where only one of
the clients submitted new operations (once every 200 ms),
and high-load conditions, where all of the clients were
writers. We measured latency by computing the mean
time that an operation was “in flight”: from the time that it
was generated by the sender’s application-level code, until
the time it was delivered to the recipient’s application.

(a) Loaded key-value store

(b) Loaded text editor

Figure 3: Latency of SPORC with all clients issuing writes

Under low-load conditions with only one writer, we
would expect the load on each client to remain constant as
the number of clients increases, because each additional
client does not add to the total number of operations in
flight. We would, however, expect to see server latency
increase modestly, as the server has to send operations
to increasing numbers of clients. Indeed, as shown in
Figure 2, the latency due to server processing increased
from under 1 ms with one client to over 3 ms with sixteen
clients, while overall latency increased modestly from
approximately 19 ms to approximately 25 ms.7

On the other hand, when every client is a writer, we
would expect the load on each client to increase with the
number of clients. As expected, Figure 3 shows that with
sixteen clients under loaded conditions, overall latency
is higher: approximately 26 ms for key-value operations
and 33 ms for the more expensive text-editor operations.
The biggest contributor to this increase is client queue-
ing, which is primarily the time that a client’s received
operations spend in its incoming queue before being pro-
cessed. Queueing delay begins at around 3 ms for one

7Figure 2 also shows small increases in the latency of client pro-
cessing and queuing when the number of clients was greater than four.
These increases are most likely due to the fact that, when we conducted
experiments with more than four clients, we ran multiple client instances
per machine.
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Figure 4: Server throughput as a function of payload size.

client and then increases steadily until it levels off at ap-
proximately 8 ms for the key-value application and 14 ms
for the text editor. Despite this increase, Figure 3 demon-
strates that SPORC successfully supports real-time col-
laboration for moderately-sized groups, even under load.
As these experiments were performed on a local-area net-
work, a wide-area deployment of SPORC would see an
increase in latency that reflects the correspondingly higher
network round-trip-time.

Figures 2 and 3 also show that client-side cryptographic
operations account for a large share of overall latency.
This occurs because SPORC performs a 2048-bit RSA sig-
nature on every outgoing operation and because Mozilla
JSS, while better than Java’s cryptography built-in library,
still requires about 10 ms to compute a single signature.
Using an optimized implementation of a more efficient sig-
nature scheme, such as ESIGN, could improve the latency
of signatures by nearly two orders of magnitude [24].

Server throughput. We measured the server’s maximum
throughput by saturating the server with operations using
100 clients. These particular clients were modified to
allow them to have more than one operation in flight at
a time. Figure 4 shows server throughput as a function
of payload size, measured in terms of both operations
per second and MB per second. Each data point was
computed by performing a three minute run of the system
and then taking the median of the mean throughput of
each one second interval. The error bars represent the 5th
and 95th percentiles. The figure shows that, as expected,
when payload size increases, the number of operations per
second decreases, because each operation requires more
time to process. But, at the same time, data throughput
(MB/s) increases, because the processing overhead per
byte decreases.

Client time-to-join. Because our current implementa-
tion lacks the checkpoints of Section 5.1, when a client
joins the document, it must first download each individ-
ual operation in the committed history. To evaluate the
cost of joining an existing document, we first filled the
history with varying numbers of operations. Then, we
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Figure 5: Client time-to-join given a variable length history

measured the time it took for a new client to receive the
shared decryption key and download and process all of
the committed operations. We performed two kinds of
experiments: one where the client started with an empty
local state, and a second in which the client had 2000
pending operations that had yet to be submitted to the
server. The purpose of the second test was to measure
how long it would take for a client that had been work-
ing offline for some length of time to synchronize with
the current state of the document. Synchronization re-
quires the client to transform its pending operations past
the committed operations that the client has not seen; thus,
it is more costly than joining a document with an empty
local state. Notably, since the-fork recovery algorithm
sketched in Section 5.3 relies on the same mechanism that
is used to synchronize clients that have been offline—it
treats operations after the fork as if they were pending
uncommitted operations—this test also sheds light on the
cost of recovering from a fork.

Figure 5 shows time-to-join as a function of history size.
Each data point represents the median of ten runs, and the
error bars correspond to the 10th and 90th percentiles. We
find that time-to-join is linear in the number of committed
operations. It takes a client with an empty local state
approximately one additional second to join a document
for every additional 1000 committed operations.

In addition, the figure shows that the time-to-join with
a significant number of pending operations varies greatly
by application. In the key-value application, the transfor-
mation function is cheap, because it is effectively a no-op
if the given operations do not affect the same keys. As
a result, the cost of transforming 2000 operations adds
little to the time-to-join. By contrast, the text editor’s
more complex transformation function adds a non-trivial,
although still acceptable, amount of overhead.

8 Related Work

Real-time “groupware” collaboration systems have
adapted classic distributed systems techniques for time-
stamping and ordering (e.g., [4, 5, 20]), but have also
introduced novel techniques to automatically resolve



conflicts between concurrent operations in an intention-
preserving manner (e.g., [11, 18, 33, 38, 39, 40, 41, 42]).
These techniques form the basis of SPORC’s client syn-
chronization mechanism and allow it to support slow or
disconnected networks. Several systems also use OT to im-
plement undo functionality (e.g., [32, 33]), and SPORC’s
fork recovery algorithm draws upon these approaches.
Furthermore, as an alternative to OT, Bayou [43] allows
applications to specify conflict detection and merge pro-
tocols to reconcile concurrent operations. Most of these
protocols focus on decentralized settings and use n-way
reconciliation, but several well-known systems use a cen-
tral server to simplify synchronization between clients
(including Jupiter [30] and Google Wave [44]). SPORC
also uses a central server for ordering and storage, but al-
lows the server to be untrusted. Secure Spread [3] presents
several efficient message encryption and key distribution
architectures for such client-server group collaboration
settings. But unlike SPORC, it relies on trusted servers
that can generate keys and re-encrypt messages as needed.

Traditionally, distributed systems have defended against
potentially malicious servers by replicating functional-
ity and storage over multiple servers. Protocols, such
as Byzantine fault tolerant (BFT) replicated state ma-
chines [9, 21, 48] or quorum systems [1, 26], can then
guarantee safety and liveness, provided that some fraction
of these servers remain non-faulty. Modern approaches
optimize performance by, for example, concurrently exe-
cuting independent operations [19], permitting client-side
speculation [45], or supporting eventual consistency [35].
BFT protocols face criticism, however, because when the
number of correct servers falls below a certain threshold
(typically two-thirds), they cannot make progress.

Subsequently, variants of fork consistency protocols
(e.g., [7, 27, 31]) have addressed the question of how
much safety one can achieve with a single untrusted server.
These works demonstrate that server equivocation can al-
ways be detected unless the server permanently forks the
clients into groups that cannot communicate with each
other. SUNDR [24] and FAUST [8] use these fork consis-
tency techniques to implement storage protocols on top
of untrusted servers. Other systems, such as A2M [10]
and TrInc [22], rely on trusted hardware to detect server
equivocation. BFT2F [23] combines techniques from
BFT replication and SUNDR to achieve fork* consistency
with higher fractions of faulty nodes than BFT can resist.
SPORC borrows from the design of BFT2F in its use of
hash chains to limit equivocation, but unlike BFT2F or
any of these other systems, SPORC allows disconnected
operation and enables clients to recover from server equiv-
ocation, not just detect it.

Like SPORC, two very recent systems, Venus [34] and
Depot [25], allow clients to use a cloud resource without
having to trust it, and they also support some degree of

disconnected operation. Venus provides strong consis-
tency in the face of a potentially malicious server, but
does not support applications other than key-value storage.
Furthermore, unlike SPORC, it requires the majority of
a “core set” of clients to be online in order to achieve
most of its consistency guarantees. In addition, although
members may be added dynamically to the group editing
the shared state, it does not allow access to be revoked,
nor does it provide a mechanism for distributing encryp-
tion keys. Depot, on the other hand, does not rely on
the availability of a “core set” of clients and supports var-
ied applications. Moreover, similar to SPORC, it allows
clients to recover from malicious forks using the same
mechanism that it uses to keep clients synchronized. But
rather than providing a means for reconciling conflicting
operations as SPORC does with OT, Depot relies on the
application for conflict resolution. Because Depot treats
clients and servers identically, it can also tolerate faulty
clients, in addition to faulty servers. Unlike SPORC, how-
ever, Depot does not consider dynamic access control or
confidentiality.

9 Conclusion

Our original goal for SPORC was to design a general
framework for web-based group collaboration that could
leverage cloud resources, but not be beholden to them
for privacy guarantees. This goal leads to a design in
which servers only store encrypted data, and each client
maintains its own local copy of the shared state. But when
each client has its own copy of the state, the system must
keep them synchronized, and operational transformation
provides a way do to so. OT enables optimistic updates
and automatically reconciles clients’ conflicting states.

Supporting applications that need timely commits re-
quires a central server. But if we do not trust the server
to preserve data privacy, we should not trust it to commit
operations correctly either. This requirement led us to
employ fork* consistency techniques to allow clients to
detect server equivocation about the order of committed
operations. But beyond the benefits that each provides
independently, this work shows that OT and fork* consis-
tency complement each other well. Whereas prior systems
that enforced fork* consistency alone were only able to
detect malicious forks, by combining fork* consistency
with OT, SPORC can recover from them using the same
mechanism that keeps clients synchronized.

In addition to these conceptual contributions, we present
a membership management architecture that provides dy-
namic access control and key distribution with an un-
trusted server, even in the face of concurrency. Finally,
we also demonstrate the flexibility of our design by imple-
menting two applications: a causally-consistent key-value
store and a browser-based collaborative text editor.
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