010Z '9-¢ 1890129 epeue] ‘g 4sAnoaue/ uoneljuswa|dw) pue ubisaq swaisAg bunesadg uo wnisodwAg X|NISN Y6 8yl Jo sbuipaadoid XIN]S"

Sponsored by

USENIX

in cooperation with
ACM SIGOPS

conference

ooo

proceedings

9th USENIX Symposium
on Operating Systems
Design and

Implementation
(0SDI "10)

Vancouver, BC, Canada
October 4-6, 2010

© 2010 by The USENIX Association
All Rights Reserved

This volume is published as a collective work. Rights to individual papers
remain with the author or the author’s employer. Permission is granted for
the noncommercial reproduction of the complete work for educational or
research purposes. USENIX acknowledges all trademarks herein.

ISBN 978-1-931971-79-9

USENIX Association

Proceedings of the
9th USENIX Symposium on Operating
Systems Design and Implementation

(OSDI °10)

October 4—6, 2010
Vancouver, BC, Canada

Symposium Organizers

Program Co-Chairs

Remzi Arpaci-Dusseau, University of Wisconsin,
Madison

Brad Chen, Google, Inc.

Program Committee

Dave Andersen, Carnegie Mellon University
Emery Berger, University of Massachusetts Amherst
Felipe Cabrera, Amazon.com

George Candea, EPFL

Bryan Cantrill, Sun Microsystems, Inc.

Pei Cao, Google, Inc.

Robert M. English, Facebook, Inc.

Bryan Ford, Yale University

Michael J. Freedman, Princeton University
Kim Hazelwood, University of Virginia

Jon Howell, Microsoft Research

Wilson Hsieh, Google, Inc.

Michael Isard, Microsoft Research

Brad Karp, University College London

Randy Katz, University of California, Berkeley
Sam King, University of Illinois, Urbana-Champaign
Hank Levy, University of Washington

Shan Lu, University of Wisconsin, Madison

Ed Nightingale, Microsoft Research
Christopher Olston, Yahoo! Research

Adrian Perrig, Carnegie Mellon University
Vijayan Prabhakaran, Microsoft Research
Mendel Rosenblum, Stanford University

Jiri Schindler, NetApp, Inc.

Bianca Schroeder, University of Toronto

Emin Giin Sirer, Cornell University

Amin Vahdat, University of California, San Diego

Carl Waldspurger, VMware

Emmett Witchel, University of Texas, Austin

Jay Wylie, HP Labs

Junfeng Yang, Columbia University

Nickolai Zeldovich, Massachusetts Institute of
Technology

Lidong Zhou, Microsoft Research

Steering Committee

Richard Draves, Microsoft Research

Margo Seltzer, Harvard School of Engineering and
Applied Sciences

Robbert van Renesse, Cornell University

Ellie Young, USENIX

Poster Session Chair
Jon Howell, Microsoft Research

Research Vision Session Program

Committee

Sam King (Chair), University of lllinois, Urbana-
Champaign

Shan Lu, University of Wisconsin—Madison

Emmett Witchel, University of Texas, Austin

The USENIX Association Staff

External Reviewers

Ole Agesen
William de Bruijn
Haowen Chan
Anthony Cozzie
Azadeh Farzan
Ariel Feldman
Prem Gopalan
Collin Jackson
Eyal de Lara
Wyatt Lloyd
Tim Mann

Jim Mattson
David Maziéres
David Meisner

Bryan Parno
Ryan Peterson
Donald E. Porter
David Shue
Ahren Studer
Shuo Tang

Amit Vasudevan
Arun Venkataramani
Bernard Wong
Hui Xue

Ting Yang
Cristian Zamfir
Steve Zdancewic

9th USENIX Symposium on Operating Systems Design and Implementation
October 4-6, 2010
Vancouver, BC, Canada

Message from the Program Co-Chairs. vii

Monday, October 4

Kernels: Past, Present, and Future

An Analysis of Linux Scalability to Many Coresttt 1
Silas Boyd-Wickizer, Austin T. Clements, Yandong Mao, Aleksey Pesterev, M. Frans Kaashoek, Robert Morris,
and Nickolai Zeldovich, MIT CSAIL

Trust and Protection in the Illinois Browser Operating Systemitiinirennnnnnen... 17
Shuo Tang, Haohui Mai, and Samuel T. King, University of Illinois at Urbana-Champaign
FlexSC: Flexible System Call Scheduling with Exception-Less System Calls. 33

Livio Soares and Michael Stumm, University of Toronto

Inside the Data Center, 1
Finding a Needle in Haystack: Facebook’s Photo Storage. 47
Doug Beaver, Sanjeev Kumar, Harry C. Li, Jason Sobel, and Peter Vajgel, Facebook Inc.

Availability in Globally Distributed Storage Systems. i 61
Daniel Ford, Francois Labelle, Florentina I. Popovici, Murray Stokely, Van-Anh Truong, Luiz Barroso, Carrie
Grimes, and Sean Quinlan, Google, Inc.

Nectar: Automatic Management of Data and Computation in Datacenters 75
Pradeep Kumar Gunda, Lenin Ravindranath, Chandramohan A. Thekkath, Yuan Yu, and Li Zhuang, Microsoft
Research Silicon Valley

Security Technologies

Intrusion Recovery Using Selective Re-eXeCUtion.ttt 89
Taesoo Kim, Xi Wang, Nickolai Zeldovich, and M. Frans Kaashoek, MIT CSAIL

Static Checking of Dynamically-Varying Security Policies in Database-Backed Applications. 105
Adam Chlipala, Impredicative LLC

Accountable Virtual Machines. e 119

Andreas Haeberlen, University of Pennsylvania; Paarijaat Aditya, Rodrigo Rodrigues, and Peter Druschel,
Max Planck Institute for Software Systems (MPI-SWS)

Concurrency Bugs

Bypassing Races in Live Applications with Execution Filters, 135
Jingyue Wu, Heming Cui, and Junfeng Yang, Columbia University

Effective Data-Race Detection for the Kernel 151
John Erickson, Madanlal Musuvathi, Sebastian Burckhardt, and Kirk Olynyk, Microsoft Research

Ad Hoc Synchronization Considered Harmful 163

Weiwei Xiong, University of Illinois at Urbana-Champaign; Soyeon Park, Jiaqi Zhang, and Yuanyuan Zhou,
University of California, San Diego; Zhiqiang Ma, Intel

USENIX Association 9th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’10) iii

Tuesday, October 5

Deterministic Parallelism

Deterministic Process Groups in dOS e 177
Tom Bergan, Nicholas Hunt, Luis Ceze, and Steven D. Gribble, University of Washington

Efficient System-Enforced Deterministic Parallelism. 193
Amittai Aviram, Shu-Chun Weng, Sen Hu, and Bryan Ford, Yale University

Stable Deterministic Multithreading through Schedule Memoization 207
Heming Cui, Jingyue Wu, Chia-che Tsai,and Junfeng Yang, Columbia University
Systems Management

Enabling Configuration-Independent Automation by Non-Expert Users.o ... 223
Nate Kushman and Dina Katabi, Massachusetts Institute of Technology

Automating Configuration Troubleshooting with Dynamic Information Flow Analysis..................... 237
Mona Attariyan and Jason Flinn, University of Michigan

Inside the Data Center, 2

Large-scale Incremental Processing Using Distributed Transactions and Notifications 251
Daniel Peng and Frank Dabek, Google, Inc.
Reining in the Outliers in Map-Reduce Clusters using Mantri. i, 265

Ganesh Ananthanarayanan, Microsoft Research and UC Berkeley,; Srikanth Kandula and Albert Greenberg,
Microsoft Research, Ion Stoica, UC Berkeley; Yi Lu, Microsoft Research, Bikas Saha and Edward Harris,
Microsoft Bing

Transactional Consistency and Automatic Management in an Application Data Cache 279
Dan R.K. Ports, Austin T. Clements, Irene Zhang, Samuel Madden, and Barbara Liskov, MIT CSAIL

Piccolo: Building Fast, Distributed Programs with Partitioned Tables. 293
Russell Power and Jinyang Li, New York University

Cloud Storage

Depot: Cloud Storage with Minimal Trust. e 307

Prince Mahajan, Srinath Setty, Sangmin Lee, Allen Clement, Lorenzo Alvisi, Mike Dahlin, and Michael Walfish,
The University of Texas at Austin

Comet: An Active Distributed Key-Value Store 323
Roxana Geambasu, Amit A. Levy, Tadayoshi Kohno, Arvind Krishnamurthy, and Henry M. Levy, University of
Washington

SPORC: Group Collaboration using Untrusted Cloud Resources., .. 337
Ariel J. Feldman, William P. Zeller, Michael J. Freedman, and Edward W. Felten, Princeton University

iv 9th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’10) USENIX Association

Wednesday, October 6

Production Networks

Onix: A Distributed Control Platform for Large-scale Production Networks. 351
Teemu Koponen, Martin Casado, Natasha Gude, and Jeremy Stribling, Nicira Networks, Leon Poutievski, Min
Zhu, and Rajiv Ramanathan, Google; Yuichiro Iwata, Hiroaki Inoue, and Takayuki Hama, NEC; Scott Shenker,
International Computer Science Institute (ICSI) and UC Berkeley

Can the Production Network Be the Testbed? e 365
Rob Sherwood, Deutsche Telekom Inc. R&D Lab,; Glen Gibb and Kok-Kiong Yap,Stanford University;, Guido
Appenczeller, Big Switch Networks; Martin Casado, Nicira Networks; Nick McKeown and Guru Parulkar,

Stanford University

Building Extensible Networks with Rule-Based Forwarding i .. 379
Lucian Popa, University of California, Berkeley, and ICSI, Berkeley; Norbert Egi, Lancaster University; Sylvia
Ratnasamy, Intel Labs, Berkeley, lon Stoica, University of California, Berkeley

Mobility
TaintDroid: An Information-Flow Tracking System for Realtime Privacy Monitoring on Smartphones 393
William Enck, The Pennsylvania State University; Peter Gilbert, Duke University, Byung-gon Chun, Intel

Labs; Landon P. Cox, Duke University, Jaeyeon Jung, Intel Labs; Patrick McDaniel, The Pennsylvania State
University; Anmol N. Sheth, Intel Labs

StarTrack Next Generation: A Scalable Infrastructure for Track-Based Applications 409
Maya Haridasan, Igbal Mohomed, Doug Terry, Chandramohan A. Thekkath, and Li Zhang, Microsoft Research
Silicon Valley

Virtualization

The Turtles Project: Design and Implementation of Nested Virtualization 423
Muli Ben-Yehuda, IBM Research—Haifa; Michael D. Day, IBM Linux Technology Center,; Zvi Dubitzky,

Michael Factor, Nadav Har El, and Abel Gordon, IBM Research—Haifa; Anthony Liguori, IBM Linux

Technology Center; Orit Wasserman and Ben-Ami Yassour, IBM Research—Haifa

mClock: Handling Throughput Variability for Hypervisor IO Scheduling. 437
Ajay Gulati, VMware Inc.; Arif Merchant, HP Labs; Peter J. Varman, Rice University

Virtualize Everything but Time. e 451
Timothy Broomhead, Laurence Cremean, Julien Ridoux, and Darryl Veitch, Center for Ultra-Broadband
Information Networks (CUBIN), The University of Melbourne

USENIX Association 9th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’10) v

Message from the Program Co-Chairs

Welcome to OSDI 10, the biggest OSDI yet, with 32 papers selected from an all-time high of 199 submissions. In
approaching the task of chairing OSDI, we started with the explicit intention of accepting a larger set of papers,
consistent with the growth in the field. Below we outline some of the rationale behind this goal, and the process we
applied to achieve it.

Computer systems research is growing as a community. We believe that progress on computer systems research is
limited by manpower, not by the limits of a finite domain for interesting research. By implication, as the number
of systems researchers increases, the volume of interesting research likely goes up as well. Year after year, top
research programs add faculty or research positions in the systems area, while at the same time new programs es-
tablish their presence in the field, including newfound growth outside the traditionally strong geographies. The ex-
pansion of our community is consistent with the robust scientific and commercial application of computer systems
research, providing a strong economic basis for this growth. We believe a larger OSDI program is an appropriate
reflection of this growth in the systems community.

We were also motivated by the challenge in making meaningful distinctions, under the pressure of program com-
mittee deadlines, between papers that are almost accepted and those almost rejected. The fragility of PC decision
process has been documented and discussed elsewhere [A08]. Too often, rejections seem arbitrary in retrospect,
hinging on the nuances of a PC discussion rather than clear merit. In accepting more papers we hope to incremen-
tally improve on the fragility of these decisions, while also building a program that is more diverse and therefore of
broader interest.

This goal of a larger program was a consideration throughout the review process. The PC was split into two groups:
a “heavy” PC who participated in the first two rounds of reviewing, and a “heavier” PC who also reviewed papers
in round three and attended a face-to-face meeting to decide final outcomes. In the first round, each paper received
two reviews and approximately 35 papers were pruned. To reduce the risk of a premature pruning decision, we
allowed reviewers to “rescue” a pruned paper by simply stating their support, with no discussion required. Each
round-2 paper received three additional reviews. Another 80 or so papers were pruned after this round. This left us
with a pool of 85 papers, each of which received two or three additional reviews in preparation for the PC meeting.
After the second and third review rounds, borderline papers were discussed electronically by the reviewers and
rejected by consensus of the reviewers.

In the single-day, face-to-face PC meeting each remaining paper was presented by a reviewer, generally an advo-
cate, followed by a time-limited discussion. Based on the first discussion, we binned each paper into one of four
categories: “accept,” “acceptable,” “questionable,” and “reject.” No rejects were allowed in the first part of the day,
the goal of this rule being to avoid the problem of a negative start leading to rejecting good papers early. When all
papers had been discussed once, we briefly considered and then accepted the “acceptable” papers as a group, then
began the difficult work of reconsidering the “questionable” papers. At the end of the meeting about 30 papers had
been accepted.

99 G

In the days following the PC meeting, a small set of additional papers were accepted based on an email vote by the
heavier PC members. While unusual, we justified this process based on our goal to create a larger and more inter-
esting program, and a sentiment shared by many PC members that the PC discussion had not given due consider-
ation to several of the best liked but most controversial papers. In retrospect we believe these late accepts allowed
us to create a stronger and more interesting program, and we would encourage future PC chairs to plan an appro-
priate process for thoughtful consideration of difficult papers after the bustle of the PC meeting has subsided. For
example, even with a single-day PC meeting, it might make sense to put a small set of papers into an “overnight”
category, allowing a broader collection of PC members to study them before a final decision the next day.

Apart from the review process, we took some additional measures to try and get more reviews and reviewers in a
mindset to accept. We encouraged positivity, following Hill and McKinley’s excellent advice [HMO05]. We strictly
applied conflict-of-interest rules, such that conflicted PC members were not given access to results for conflicted

USENIX Association 9th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’10) vii

papers until notifications had been sent to authors. We tried to lighten the PC load from papers that had no chance
of acceptance, to leave more quality time for the remaining papers.

Before we close we’d like to briefly acknowledge a few individuals who made a difference in our bringing this
program to you. The USENIX staff was fantastic throughout the entire process. We also thank Eddie Kohler for his
continued support of HotCRP, a truly wonderful piece of software. We also would like to acknowledge the program
committee for their tireless efforts and thoughtful reviews, and Haryadi Gunawi for his detailed note-taking during
the PC meeting. Finally, we would like to thank our families and the families of PC members for supporting (and
tolerating!) the long hours required to do this kind of work.

Thank you for attending OSDI 10, and have a great conference!

Remzi Arpaci-Dusseau, University of Wisconsin, Madison
Brad Chen, Google
OSDI ’10 Program Co-Chairs

REFERENCES

[A08] “Towards a Model of Computer Systems Research,” Thomas Anderson, University of Washington. WOWCS
’08, April 2008.

[HMO5] “Notes on Constructive and Positive Reviewing,” Mark Hill, University of Wisconsin—Madison, and

Kathryn S McKinley, University of Texas at Austin: http://userweb.cs.utexas.edu/users/mckinley/notes/reviewing
.html, May 2005.

viii 9th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’10) USENIX Association

An Analysis of Linux Scalability to Many Cores

Silas Boyd-Wickizer, Austin T. Clements, Yandong Mao, Aleksey Pesterev,
M. Frans Kaashoek, Robert Morris, and Nickolai Zeldovich
MIT CSAIL

ABSTRACT

This paper analyzes the scalability of seven system appli-
cations (Exim, memcached, Apache, PostgreSQL, gmake,
Psearchy, and MapReduce) running on Linux on a 48-
core computer. Except for gmake, all applications trigger
scalability bottlenecks inside a recent Linux kernel. Us-
ing mostly standard parallel programming techniques—
this paper introduces one new technique, sloppy coun-
ters—these bottlenecks can be removed from the kernel
or avoided by changing the applications slightly. Modify-
ing the kernel required in total 3002 lines of code changes.
A speculative conclusion from this analysis is that there
is no scalability reason to give up on traditional operating
system organizations just yet.

1 INTRODUCTION

There is a sense in the community that traditional kernel
designs won’t scale well on multicore processors: that
applications will spend an increasing fraction of their time
in the kernel as the number of cores increases. Promi-
nent researchers have advocated rethinking operating sys-
tems [10, 28, 43] and new kernel designs intended to al-
low scalability have been proposed (e.g., Barrelfish [11],
Corey [15], and fos [53]). This paper asks whether tradi-
tional kernel designs can be used and implemented in a
way that allows applications to scale.

This question is difficult to answer conclusively, but
we attempt to shed a small amount of light on it. We
analyze scaling a number of system applications on
Linux running with a 48-core machine. We examine
Linux because it has a traditional kernel design, and be-
cause the Linux community has made great progress in
making it scalable. The applications include the Exim
mail server [2], memcached [3], Apache serving static
files [1], PostgreSQL [4], gmake [23], the Psearchy file
indexer [35, 48], and a multicore MapReduce library [38].
These applications, which we will refer to collectively
as MOSBENCH, are designed for parallel execution and
stress many major Linux kernel components.

Our method for deciding whether the Linux kernel
design is compatible with application scalability is as
follows. First we measure scalability of the MOSBENCH
applications on a recent Linux kernel (2.6.35-rc5, released
July 12, 2010) with 48 cores, using the in-memory tmpfs
file system to avoid disk bottlenecks. gmake scales well,

but the other applications scale poorly, performing much
less work per core with 48 cores than with one core. We
attempt to understand and fix the scalability problems, by
modifying either the applications or the Linux kernel. We
then iterate, since fixing one scalability problem usually
exposes further ones. The end result for each applica-
tion is either good scalability on 48 cores, or attribution
of non-scalability to a hard-to-fix problem with the ap-
plication, the Linux kernel, or the underlying hardware.
The analysis of whether the kernel design is compatible
with scaling rests on the extent to which our changes to
the Linux kernel turn out to be modest, and the extent
to which hard-to-fix problems with the Linux kernel ulti-
mately limit application scalability.

As part of the analysis, we fixed three broad kinds of
scalability problems for MOSBENCH applications: prob-
lems caused by the Linux kernel implementation, prob-
lems caused by the applications’ user-level design, and
problems caused by the way the applications use Linux
kernel services. Once we identified a bottleneck, it typi-
cally required little work to remove or avoid it. In some
cases we modified the application to be more parallel, or
to use kernel services in a more scalable fashion, and in
others we modified the kernel. The kernel changes are all
localized, and typically involve avoiding locks and atomic
instructions by organizing data structures in a distributed
fashion to avoid unnecessary sharing. One reason the
required changes are modest is that stock Linux already
incorporates many modifications to improve scalability.
More speculatively, perhaps it is the case that Linux’s
system-call API is well suited to an implementation that
avoids unnecessary contention over kernel objects.

The main contributions of this paper are as follows.
The first contribution is a set of 16 scalability improve-
ments to the Linux 2.6.35-rc5 kernel, resulting in what we
refer to as the patched kernel, PK. A few of the changes
rely on a new idea, which we call sloppy counters, that
has the nice property that it can be used to augment shared
counters to make some uses more scalable without having
to change all uses of the shared counter. This technique
is particularly effective in Linux because typically only
a few uses of a given shared counter are scalability bot-
tlenecks; sloppy counters allow us to replace just those
few uses without modifying the many other uses in the
kernel. The second contribution is a set of application

USENIX Association

9th USENIX Symposium on Operating Systems Design and Implementation (OSDI *10) 1

benchmarks, MOSBENCH, to measure scalability of op-
erating systems, which we make publicly available. The
third is a description of the techniques required to im-
prove the scalability of the MOSBENCH applications. Our
final contribution is an analysis using MOSBENCH that
suggests that there is no immediate scalability reason to
give up on traditional kernel designs.

The rest of the paper is organized as follows. Section 2
relates this paper to previous work. Section 3 describes
the applications in MOSBENCH and what operating sys-
tem components they stress. Section 4 summarizes the
differences between the stock and PK kernels. Section 5
reports on the scalability of MOSBENCH on the stock
Linux 2.6.35-rc5 kernel and the PK kernel. Section 6
discusses the implications of the results. Section 7 sum-
marizes this paper’s conclusions.

2 RELATED WORK

There is a long history of work in academia and industry
to scale Unix-like operating systems on shared-memory
multiprocessors. Research projects such as the Stanford
FLASH [33] as well as companies such as IBM, Se-
quent, SGI, and Sun have produced shared-memory ma-
chines with tens to hundreds processors running variants
of Unix. Many techniques have been invented to scale
software for these machines, including scalable locking
(e.g., [41]), wait-free synchronization (e.g., [27]), mul-
tiprocessor schedulers (e.g., [8, 13, 30, 50]), memory
management (e.g., [14, 19, 34, 52, 57]), and fast message
passing using shared memory (e.g., [12, 47]). Textbooks
have been written about adapting Unix for multiproces-
sors (e.g., [46]). These techniques have been incorporated
in current operating systems such as Linux, Mac OS X,
Solaris, and Windows. Cantrill and Bonwick summarize
the historical context and real-world experience [17].

This paper extends previous scalability studies by ex-
amining a large set of systems applications, by using a
48-core PC platform, and by detailing a particular set of
problems and solutions in the context of Linux. These
solutions follow the standard parallel programming tech-
nique of factoring data structures so that each core can
operate on separate data when sharing is not required, but
such that cores can share data when necessary.

Linux scalability improvements. Early multiproces-
sor Linux kernels scaled poorly with kernel-intensive par-
allel workloads because the kernel used coarse-granularity
locks for simplicity. Since then the Linux commu-
nity has redesigned many kernel subsystems to im-
prove scalability (e.g., Read-Copy-Update (RCU) [39],
local run queues [6], libnuma [31], and improved
load-balancing support [37]). The Linux symposium
(www . linuxsymposium.org) features papers related to
scalability almost every year. Some of the redesigns are
based on the above-mentioned research, and some com-

panies, such as IBM and SGI [16], have contributed code
directly. Kleen provides a brief history of Linux kernel
modifications for scaling and reports some areas of poor
scalability in a recent Linux version (2.6.31) [32]. In this
paper, we identify additional kernel scaling problems and
describes how to address them.

Linux scalability studies. Gough ef al. study the scal-
ability of Oracle Database 10g running on Linux 2.6.18
on dual-core Intel Itanium processors [24]. The study
finds problems with the Linux run queue, slab alloca-
tor, and I/O processing. Cui et al. uses the TPCC-UVa
and Sysbench-OLTP benchmarks with PostgreSQL to
study the scalability of Linux 2.6.25 on an Intel 8-core
system [56], and finds application-internal bottlenecks
as well as poor kernel scalability in System V IPC. We
find that these problems have either been recently fixed
by the Linux community or are a consequence of fixable
problems in PostgreSQL.

Veal and Foong evaluate the scalability of Apache run-
ning on Linux 2.6.20.3 on an §-core AMD Opteron com-
puter using SPECweb2005 [51]. They identify Linux scal-
ing problems in the kernel implementations of scheduling
and directory lookup, respectively. On a 48-core com-
puter, we also observe directory lookup as a scalability
problem and PK applies a number of techniques to ad-
dress this bottleneck. Pesterev et al. identify scalability
problems in the Linux 2.6.30 network code using mem-
cached and Apache [44]. The PK kernel addresses these
problems by using a modern network card that supports a
large number of virtual queues (similar to the approach
taken by Route Bricks [21]).

Cui et al. describe microbenchmarks for measuring
multicore scalability and report results from running them
on Linux on a 32-core machine [55]. They find a number
of scalability problems in Linux (e.g., memory-mapped
file creation and deletion). Memory-mapped files show
up as a scalability problem in one MOSBENCH application
when multiple threads run in the same address space with
memory-mapped files.

A number of new research operating systems use scal-
ability problems in Linux as motivation. The Corey pa-
per [15] identified bottlenecks in the Linux file descriptor
and virtual memory management code caused by unneces-
sary sharing. Both of these bottlenecks are also triggered
by MOSBENCH applications. The Barrelfish paper [11]
observed that Linux TLB shootdown scales poorly. This
problem is not observed in the MOSBENCH applications.
Using microbenchmarks, the fos paper [53] finds that the
physical page allocator in Linux 2.6.24.7 does not scale
beyond 8 cores and that executing the kernel and applica-
tions on the same core results in cache interference and
high miss rates. We find that the page allocator isn’t a
bottleneck for MOSBENCH applications on 48 cores (even
though they stress memory allocation), though we have

9th USENIX Symposium on Operating Systems Design and Implementation (OSDI *10)

USENIX Association

reason to believe it would be a problem with more cores.
However, the problem appears to be avoidable by, for
example, using super-pages or modifying the kernel to
batch page allocation.

Solaris scalability studies. Solaris provides a UNIX
API and runs on SPARC-based and x86-based multi-
core processors. Solaris incorporates SNZIs [22], which
are similar to sloppy counters (see section 4.3). Tseng
et al. report that SAP-SD, IBM Trade and several syn-
thetic benchmarks scale well on an 8-core SPARC system
running Solaris 10 [49]. Zou et al. encountered coarse
grained locks in the UDP networking stack of Solaris
10 that limited scalability of the OpenSER SIP proxy
server on an 8-core SPARC system [29]. Using the mi-
crobenchmarks mentioned above [55], Cui et al. compare
FreeBSD, Linux, and Solaris [54], and find that Linux
scales better on some microbenchmarks and Solaris scales
better on others. We ran some of the MOSBENCH appli-
cations on Solaris 10 on the 48-core machine used for
this paper. While the Solaris license prohibits us from re-
porting quantitative results, we observed similar or worse
scaling behavior compared to Linux; however, we don’t
know the causes or whether Solaris would perform better
on SPARC hardware. We hope, however, that this paper
helps others who might analyze Solaris.

3 THE MOSBENCH APPLICATIONS

To stress the kernel we chose two sets of applications:
1) applications that previous work has shown not to
scale well on Linux (memcached; Apache; and Metis, a
MapReduce library); and 2) applications that are designed
for parallel execution and are kernel intensive (gmake,
PostgreSQL, Exim, and Psearchy). Because many ap-
plications are bottlenecked by disk writes, we used an
in-memory tmpfs file system to explore non-disk limita-
tions. We drive some of the applications with synthetic
user workloads designed to cause them to use the ker-
nel intensively, with realism a secondary consideration.
This collection of applications stresses important parts
of many kernel components (e.g., the network stack, file
name cache, page cache, memory manager, process man-
ager, and scheduler). Most spend a significant fraction
of their CPU time in the kernel when run on a single
core. All but one encountered serious scaling problems
at 48 cores caused by the stock Linux kernel. The rest of
this section describes the selected applications, how they
are parallelized, and what kernel services they stress.

3.1 Mail server

Exim [2] is a mail server. We operate it in a mode where
a single master process listens for incoming SMTP con-
nections via TCP and forks a new process for each con-
nection, which in turn accepts the incoming mail, queues
it in a shared set of spool directories, appends it to the

per-user mail file, deletes the spooled mail, and records
the delivery in a shared log file. Each per-connection pro-
cess also forks twice to deliver each message. With many
concurrent client connections, Exim has a good deal of
parallelism. It spends 69% of its time in the kernel on
a single core, stressing process creation and small file
creation and deletion.

3.2 Object cache

memcached [3] is an in-memory key-value store often
used to improve web application performance. A single
memcached server running on multiple cores is bottle-
necked by an internal lock that protects the key-value hash
table. To avoid this problem, we run multiple memcached
servers, each on its own port, and have clients determin-
istically distribute key lookups among the servers. This
organization allows the servers to process requests in par-
allel. When request sizes are small, memcached mainly
stresses the network stack, spending 80% of its time pro-
cessing packets in the kernel at one core.

3.3 Web server

Apache [1] is a popular Web server, which previous work
(e.g., [51]) has used to study Linux scalability. We run a
single instance of Apache listening on port 80. We config-
ure this instance to run one process per core. Each process
has a thread pool to service connections; one thread is
dedicated to accepting incoming connections while the
other threads process the connections. In addition to the
network stack, this configuration stresses the file system
(in particular directory name lookup) because it stats and
opens a file on every request. Running on a single core,
an Apache process spends 60% of its execution time in
the kernel.

3.4 Database

PostgreSQL [4] is a popular open source SQL database,
which, unlike many of our other workloads, makes exten-
sive internal use of shared data structures and synchro-
nization. PostgreSQL also stresses many shared resources
in the kernel: it stores database tables as regular files
accessed concurrently by all PostgreSQL processes, it
starts one process per connection, it makes use of kernel
locking interfaces to synchronize and load balance these
processes, and it communicates with clients over TCP
sockets that share the network interface.

Ideally, PostgreSQL would scale well for read-mostly
workloads, despite its inherent synchronization needs.
PostgreSQL relies on snapshot isolation, a form of opti-
mistic concurrency control that avoids most read locks.
Furthermore, most write operations acquire only row-
level locks exclusively and acquire all coarser-grained
locks in shared modes. Thus, in principle, PostgreSQL
should exhibit little contention for read-mostly workloads.
In practice, PostgreSQL is limited by bottlenecks in both

USENIX Association

9th USENIX Symposium on Operating Systems Design and Implementation (OSDI *10) 3

its own code and in the kernel. For a read-only work-
load that avoids most application bottlenecks, PostgreSQL
spends only 1.5% of its time in the kernel with one core,
but this grows to 82% with 48 cores.

3.5 Parallel build

gmake [23] is an implementation of the standard make
utility that supports executing independent build rules
concurrently. gmake is the unofficial default benchmark
in the Linux community since all developers use it to
build the Linux kernel. Indeed, many Linux patches
include comments like “This speeds up compiling the
kernel.” We benchmarked gmake by building the stock
Linux 2.6.35-rc5 kernel with the default configuration
for x86_64. gmake creates more processes than there are
cores, and reads and writes many files. The execution
time of gmake is dominated by the compiler it runs, but
system time is not negligible: with one core, 7.6% of the
execution time is system time.

3.6 Fileindexer

Psearchy is a parallel version of searchy [35, 48], a pro-
gram to index and query Web pages. We focus on the
indexing component of searchy because it is more system
intensive. Our parallel version, pedsort, runs the searchy
indexer on each core, sharing a work queue of input files.
Each core operates in two phases. In phase 1, it pulls input
files off the work queue, reading each file and recording
the positions of each word in a per-core hash table. When
the hash table reaches a fixed size limit, it sorts it alpha-
betically, flushes it to an intermediate index on disk, and
continues processing input files. Phase 1 is both compute
intensive (looking up words in the hash table and sorting
it) and file-system intensive (reading input files and flush-
ing the hash table). To avoid stragglers in phase 1, the
initial work queue is sorted so large files are processed
first. Once the work queue is empty, each core merges
the intermediate index files it produced, concatenating the
position lists of words that appear in multiple intermedi-
ate indexes, and generates a binary file that records the
positions of each word and a sequence of Berkeley DB
files that map each word to its byte offset in the binary
file. To simplify the scalability analysis, each core starts
a new Berkeley DB every 200,000 entries, eliminating
a logarithmic factor and making the aggregate work per-
formed by the indexer constant regardless of the number
of cores. Unlike phase 1, phase 2 is mostly file-system
intensive. While pedsort spends only 1.9% of its time
in the kernel at one core, this grows to 23% at 48 cores,
indicating scalability limitations.

3.7 MapReduce

Metis is a MapReduce [20] library for single multicore
servers inspired by Phoenix [45]. We use Metis with an
application that generates inverted indices. This workload

allocates large amounts of memory to hold temporary
tables, stressing the kernel memory allocator and soft page
fault code. This workload spends 3% of its runtime in the
kernel with one core, but this rises to 16% at 48 cores.

4 KERNEL OPTIMIZATIONS

The MOSBENCH applications trigger a few scalability
bottlenecks in the kernel. We describe the bottlenecks
and our solutions here, before presenting detailed per-
application scaling results in Section 5, because many
of the bottlenecks are common to multiple applications.
Figure 1 summarizes the bottlenecks. Some of these prob-
lems have been discussed on the Linux kernel mailing
list and solutions proposed; perhaps the reason these solu-
tions have not been implemented in the standard kernel is
that the problems are not acute on small-scale SMPs or
are masked by I/O delays in many applications. Figure 1
also summarizes our solution for each bottleneck.

4.1 Scalability tutorial

Why might one expect performance to scale well with the
number of cores? If a workload consists of an unlimited
supply of tasks that do not interact, then you’d expect to
get linear increases in total throughput by adding cores
and running tasks in parallel. In real life parallel tasks
usually interact, and interaction usually forces serial ex-
ecution. Amdahl’s Law summarizes the result: however
small the serial portion, it will eventually prevent added
cores from increasing performance. For example, if 25%
of a program is serial (perhaps inside some global locks),
then any number of cores can provide no more than 4-
times speedup.

Here are a few types of serializing interactions that
the MOSBENCH applications encountered. These are all
classic considerations in parallel programming, and are
discussed in previous work such as [17].

e The tasks may lock a shared data structure, so that
increasing the number of cores increases the lock
wait time.

o The tasks may write a shared memory location, so
that increasing the number of cores increases the
time spent waiting for the cache coherence proto-
col to fetch the cache line in exclusive mode. This
problem can occur even in lock-free shared data
structures.

e The tasks may compete for space in a limited-size
shared hardware cache, so that increasing the number
of cores increases the cache miss rate. This problem
can occur even if tasks never share memory.

e The tasks may compete for other shared hardware
resources such as inter-core interconnect or DRAM

9th USENIX Symposium on Operating Systems Design and Implementation (OSDI *10)

USENIX Association

Parallel accept

Apache

Concurrent accept system calls contend on shared socket fields.

dentry reference counting

User per-core backlog queues for listening sockets.

Apache, Exim

File name resolution contends on directory entry reference counts.

Mount point (vfsmount) reference counting

Use sloppy counters to reference count directory entry objects.

Apache, Exim

Walking file name paths contends on mount point reference counts.

IP packet destination (dst_entry) reference counting

Use sloppy counters for mount point objects.

memcached, Apache

IP packet transmission contends on routing table entries.

Protocol memory usage tracking

Use sloppy counters for IP routing table entries.

memcached, Apache

Cores contend on counters for tracking protocol memory consumption.

Acquiring directory entry (dentry) spin locks

=

Use sloppy counters for protocol usage counting.

Apache, Exim

Walking file name paths contends on per-directory entry spin locks.

Mount point table spin lock

=

Use a lock-free protocol in dlookup for checking filename matches.

Apache, Exim

Resolving path names to mount points contends on a global spin lock.

Adding files to the open list

=

Use per-core mount table caches.

Apache, Exim

Cores contend on a per-super block list that tracks open files.
Allocating DMA buffers

Use per-core open file lists for each super block that has open files.

memcached, Apache

DMA memory allocations contend on the memory node 0 spin lock.

False sharing in net_device and device

=

Allocate Ethernet device DMA buffers from the local memory node.

memcached, Apache, PostgreSQL

False sharing causes contention for read-only structure fields.

False sharing in page

=

Place read-only fields on their own cache lines.

Exim

False sharing causes contention for read-mostly structure fields.

inode lists

=

Place read-only fields on their own cache lines.

memcached, Apache

Cores contend on global locks protecting lists used to track inodes.

Dcache lists

=

Avoid acquiring the locks when not necessary.

memcached, Apache

Cores contend on global locks protecting lists used to track dentrys.

Per-inode mutex

=

Avoid acquiring the locks when not necessary.
PostgreSQL

Cores contend on a per-inode mutex in 1seek. = Use atomic reads to eliminate the need to acquire the mutex.
Super-page fine grained locking Metis

Super-page soft page faults contend on a per-process mutex. = Protect each super-page memory mapping with its own mutex.
Zeroing super-pages Metis

Zeroing super-pages flushes the contents of on-chip caches. = Use non-caching instructions to zero the contents of super-pages.

Figure 1: A summary of Linux scalability problems encountered by MOSBENCH applications and their corresponding fixes. The fixes add 2617 lines

of code to Linux and remove 385 lines of code from Linux.

interfaces, so that additional cores spend their time
waiting for those resources rather than computing.

e There may be too few tasks to keep all cores busy,
so that increasing the number of cores leads to more
idle cores.

Many scaling problems manifest themselves as delays
caused by cache misses when a core uses data that other
cores have written. This is the usual symptom both for
lock contention and for contention on lock-free mutable
data. The details depend on the hardware cache coherence
protocol, but the following is typical. Each core has a
data cache for its own use. When a core writes data that
other cores have cached, the cache coherence protocol
forces the write to wait while the protocol finds the cached
copies and invalidates them. When a core reads data
that another core has just written, the cache coherence
protocol doesn’t return the data until it finds the cache that
holds the modified data, annotates that cache to indicate
there is a copy of the data, and fetches the data to the
reading core. These operations take about the same time

as loading data from off-chip RAM (hundreds of cycles),
so sharing mutable data can have a disproportionate effect
on performance.

Exercising the cache coherence machinery by modify-
ing shared data can produce two kinds of scaling problems.
First, the cache coherence protocol serializes modifica-
tions to the same cache line, which can prevent parallel
speedup. Second, in extreme cases the protocol may
saturate the inter-core interconnect, again preventing addi-
tional cores from providing additional performance. Thus
good performance and scalability often demand that data
be structured so that each item of mutable data is used by
only one core.

In many cases scaling bottlenecks limit performance
to some maximum, regardless of the number of cores. In
other cases total throughput decreases as the number of
cores grows, because each waiting core slows down the
cores that are making progress. For example, non-scalable
spin locks produce per-acquire interconnect traffic that is
proportional to the number of waiting cores; this traffic
may slow down the core that holds the lock by an amount
proportional to the number of waiting cores [41]. Acquir-

USENIX Association

9th USENIX Symposium on Operating Systems Design and Implementation (OSDI *10)

5

ing a Linux spin lock takes a few cycles if the acquiring
core was the previous lock holder, takes a few hundred
cycles if another core last held the lock and there is no
contention, and are not scalable under contention.

Performance is often the enemy of scaling. One way
to achieve scalability is to use inefficient algorithms, so
that each core busily computes and makes little use of
shared resources such as locks. Conversely, increasing
the efficiency of software often makes it less scalable, by
increasing the fraction of time it uses shared resources.
This effect occurred many times in our investigations of
MOSBENCH application scalability.

Some scaling bottlenecks cannot easily be fixed, be-
cause the semantics of the shared resource require serial
access. However, it is often the case that the implementa-
tion can be changed so that cores do not have to wait for
each other. For example, in the stock Linux kernel the set
of runnable threads is partitioned into mostly-private per-
core scheduling queues; in the common case, each core
only reads, writes, and locks its own queue [36]. Many
scaling modifications to Linux follow this general pattern.

Many of our scaling modifications follow this same
pattern, avoiding both contention for locks and contention
for the underlying data. We solved other problems using
well-known techniques such as lock-free protocols or fine-
grained locking. In all cases we were able to eliminate
scaling bottlenecks with only local changes to the kernel
code. The following subsections explain our techniques.

4.2 Multicore packet processing

The Linux network stack connects different stages of
packet processing with queues. A received packet typ-
ically passes through multiple queues before finally ar-
riving at a per-socket queue, from which the application
reads it with a system call like read or accept. Good
performance with many cores and many independent net-
work connections demands that each packet, queue, and
connection be handled by just one core [21, 42]. This
avoids inter-core cache misses and queue locking costs.
Recent Linux kernels take advantage of network cards
with multiple hardware queues, such as Intel’s 82599
10Gbit Ethernet (IXGBE) card, or use software tech-
niques, such as Receive Packet Steering [26] and Receive
Flow Steering [25], to attempt to achieve this property.
With a multi-queue card, Linux can be configured to as-
sign each hardware queue to a different core. Transmit
scaling is then easy: Linux simply places outgoing pack-
ets on the hardware queue associated with the current
core. For incoming packets, such network cards provide
an interface to configure the hardware to enqueue incom-
ing packets matching a particular criteria (e.g., source IP
address and port number) on a specific queue and thus
to a particular core. This spreads packet processing load
across cores. However, the IXGBE driver goes further:

for each core, it samples every 20" outgoing TCP packet
and updates the hardware’s flow directing tables to de-
liver further incoming packets from that TCP connection
directly to the core.

This design typically performs well for long-lived con-
nections, but poorly for short ones. Because the technique
is based on sampling, it is likely that the majority of
packets on a given short connection will be misdirected,
causing cache misses as Linux delivers to the socket on
one core while the socket is used on another. Furthermore,
because few packets are received per short-lived connec-
tion, misdirecting even the initial handshake packet of a
connection imposes a significant cost.

For applications like Apache that simultaneously ac-
cept connections on all cores from the same listening
socket, we address this problem by allowing the hard-
ware to determine which core and thus which application
thread will handle an incoming connection. We modify
accept to prefer connections delivered to the local core’s
queue. Then, if the application processes the connection
on the same core that accepted it (as in Apache), all pro-
cessing for that connection will remain entirely on one
core. Our solution has the added benefit of addressing
contention on the lock that protects the single listening
socket’s connection backlog queue.

To implement this, we configured the IXGBE to direct
each packet to a queue (and thus core) using a hash of the
packet headers designed to deliver all of a connection’s
packets (including the TCP handshake packets) to the
same core. We then modified the code that handles TCP
connection setup requests to queue requests on a per-core
backlog queue for the listening socket, so that a thread
will accept and process connections that the IXGBE di-
rects to the core running that thread. If accept finds the
current core’s backlog queue empty, it attempts to steal
a connection request from a different core’s queue. This
arrangement provides high performance for short connec-
tions by processing each connection entirely on one core.
If threads were to move from core to core while handling
a single connection, a combination of this technique and
the current sampling approach might be best.

4.3 Sloppy counters

Linux uses shared counters for reference-counted garbage
collection and to manage various resources. These coun-
ters can become bottlenecks if many cores update them.
In these cases lock-free atomic increment and decrement
instructions do not help, because the coherence hardware
serializes the operations on a given counter.

The MOSBENCH applications encountered bottle-
necks from reference counts on directory entry objects
(dentrys), mounted file system objects (vEsmounts), net-
work routing table entries (dst_entrys), and counters

9th USENIX Symposium on Operating Systems Design and Implementation (OSDI *10)

USENIX Association

Core 0
(s
(s
[

(]

(s
(|
(s
(s
e~

dent
refce(?u :1{ | E E E

Core 1
\/\
\/\

Time

Figure 2: An example of the kernel using a sloppy counter for dentry
reference counting. A large circle represents a local counter, and a gray
dot represents a held reference. In this figure, a thread on core O first
acquires a reference from the central counter. When the thread releases
this reference, it adds the reference to the local counter. Finally, another
thread on core 0 is able to acquire the spare reference without touching
the central counter.

tracking the amount of memory allocated by each net-
work protocol (such as TCP or UDP).

Our solution, which we call sloppy counters, builds on
the intuition that each core can hold a few spare references
to an object, in hopes that it can give ownership of these
references to threads running on that core, without having
to modify the global reference count. More concretely,
a sloppy counter represents one logical counter as a sin-
gle shared central counter and a set of per-core counts
of spare references. When a core increments a sloppy
counter by V/, it first tries to acquire a spare reference
by decrementing its per-core counter by V. If the per-
core counter is greater than or equal to V, meaning there
are sufficient local references, the decrement succeeds.
Otherwise the core must acquire the references from the
central counter, so it increments the shared counter by
V. When a core decrements a sloppy counter by V/, it
releases these references as local spare references, incre-
menting its per-core counter by V. Figure 2 illustrates
incrementing and decrementing a sloppy counter. If the
local count grows above some threshold, spare references
are released by decrementing both the per-core count and
the central count.

Sloppy counters maintain the invariant that the sum
of per-core counters and the number of resources in use
equals the value in the shared counter. For example, a
shared dentry reference counter equals the sum of the
per-core counters and the number of references to the
dentry currently in use.

A core usually updates a sloppy counter by modifying
its per-core counter, an operation which typically only
needs to touch data in the core’s local cache (no waiting
for locks or cache-coherence serialization).

We added sloppy counters to count references to
dentrys, vismounts, and dst_entrys, and used sloppy
counters to track the amount of memory allocated by
each network protocol (such as TCP and UDP). Only

uses of a counter that cause contention need to be mod-
ified, since sloppy counters are backwards-compatible
with existing shared-counter code. The kernel code that
creates a sloppy counter allocates the per-core counters.
It is occasionally necessary to reconcile the central and
per-core counters, for example when deciding whether an
object can be de-allocated. This operation is expensive,
so sloppy counters should only be used for objects that
are relatively infrequently de-allocated.

Sloppy counters are similar to Scalable NonZero Indi-
cators (SNZI) [22], distributed counters [9], and approxi-
mate counters [5]. All of these techniques speed up incre-
ment/decrement by use of per-core counters, and require
significantly more work to find the true total value. Sloppy
counters are attractive when one wishes to improve the
performance of some uses of an existing counter without
having to modify all points in the code where the counter
is used. A limitation of sloppy counters is that they use
space proportional to the number of cores.

4.4 Lock-free comparison

We found situations in which MOSBENCH applications
were bottlenecked by low scalability for name lookups
in the directory entry cache. The directory entry cache
speeds up lookups by mapping a directory and a file name
to a dentry identifying the target file’s inode. When
a potential dentry is located, the lookup code acquires
a per-dentry spin lock to atomically compare several
fields of the dentry with the arguments of the lookup
function. Even though the directory cache has been op-
timized using RCU for scalability [40], the dentry spin
lock for common parent directories, such as /usr, was
sometimes a bottleneck even if the path names ultimately
referred to different files.

We optimized dentry comparisons using a lock-free
protocol similar to Linux’ lock-free page cache lookup
protocol [18]. The lock-free protocol uses a generation
counter, which the PK kernel increments after every mod-
ification to a directory entry (e.g., mv foo bar). During
a modification (when the dentry spin lock is held), PK
temporarily sets the generation counter to 0. The PK ker-
nel compares dentry fields to the arguments using the
following procedure for atomicity:

e If the generation counter is 0, fall back to the lock-
ing protocol. Otherwise remember the value of the
generation counter.

e Copy the fields of the dentry to local variables. If
the generation afterwards differs from the remem-
bered value, fall back to the locking protocol.

e Compare the copied fields to the arguments. If there
is a match, increment the reference count unless it is
0, and return the dentry. If the reference count is 0,
fall back to the locking protocol.

USENIX Association

9th USENIX Symposium on Operating Systems Design and Implementation (OSDI *10) 7

The lock-free protocol improves scalability because it
allows cores to perform lookups for the same directory
entries without serializing.

4.5 Per-core data structures

We encountered three kernel data structures that caused
scaling bottlenecks due to lock contention: a per-super-
block list of open files that determines whether a read-
write file system can be remounted read-only, a table of
mount points used during path lookup, and the pool of
free packet buffers. Though each of these bottlenecks is
caused by lock contention, bottlenecks would remain if
we replaced the locks with finer grained locks or a lock
free protocol, because multiple cores update the data struc-
tures. Therefore our solutions refactor the data structures
so that in the common case each core uses different data.

We split the per-super-block list of open files into per-
core lists. When a process opens a file the kernel locks
the current core’s list and adds the file. In most cases
a process closes the file on the same core it opened it
on. However, the process might have migrated to another
core, in which case the file must be expensively removed
from the list of the original core. When the kernel checks
if a file system can be remounted read-only it must lock
and scan all cores’ lists.

We also added per-core vEsmount tables, each acting
as a cache for a central vismount table. When the kernel
needs to look up the vEsmount for a path, it first looks in
the current core’s table, then the central table. If the latter
succeeds, the result is added to the per-core table.

Finally, the default Linux policy for machines with
NUMA memory is to allocate packet buffers (skbuffs)
from a single free list in the memory system closest to the
I/O bus. This caused contention for the lock protecting
the free list. We solved this using per-core free lists.

4.6 Eliminating false sharing

We found some MOSBENCH applications caused false
sharing in the kernel. In the cases we identified, the ker-
nel located a variable it updated often on the same cache
line as a variable it read often. The result was that cores
contended for the falsely shared line, limiting scalabil-
ity. Exim per-core performance degraded because of false
sharing of physical page reference counts and flags, which
the kernel located on the same cache line of a page vari-
able. memcached, Apache, and PostgreSQL faced simi-
lar false sharing problems with net_device and device
variables. In all cases, placing the heavily modified data
on a separate cache line improved scalability.

4.7 Avoiding unnecessary locking

For small numbers of cores, lock contention in Linux
does not limit scalability for MOSBENCH applications.
With more than 16 cores, the scalability of memcached,
Apache, PostgreSQL, and Metis are limited by waiting for

Stock =
PK o

0.8 [~ -

il

Exim memcached Apache PostgreSQL gmake pedsort Metis

Per-core throughput at 48 cores relative to 1 core

Figure 3: MOSBENCH results summary. Each bar shows the ratio of
per-core throughput with 48 cores to throughput on one core, with 1.0
indicating perfect scalability. Each pair of bars corresponds to one
application before and after our kernel and application modifications.

and acquiring spin locks and mutexes' in the file system
and virtual memory management code. In many cases we
were able to eliminate acquisitions of the locks altogether
by modifying the code to detect special cases when ac-
quiring the locks was unnecessary. In one case, we split
a mutex protecting all the super page mappings into one
mutex per mapping.

S EVALUATION

This section evaluates the MOSBENCH applications on
the most recent Linux kernel at the time of writing
(Linux 2.6.35-rc5, released on July 12, 2010) and our
modified version of this kernel, PK. For each applica-
tion, we describe how the stock kernel limits scalability,
and how we addressed the bottlenecks by modifying the
application and taking advantage of the PK changes.

Figure 3 summarizes the results of the MOSBENCH
benchmark, comparing application scalability before and
after our modifications. A bar with height 1.0 indicates
perfect scalability (48 cores yielding a speedup of 48).
Most of the applications scale significantly better with
our modifications. All of them fall short of perfect scal-
ability even with those modifications. As the rest of this
section explains, the remaining scalability bottlenecks are
not the fault of the kernel. Instead, they are caused by
non-parallelizable components in the application or un-
derlying hardware: resources that the application’s design
requires it to share, imperfect load balance, or hardware
bottlenecks such as the memory system or the network
card. For this reason, we conclude that the Linux ker-
nel with our modifications is consistent with MOSBENCH
scalability up to 48 cores.

For each application we show scalability plots in the
same format, which shows throughput per core (see, for
example, Figure 4). A horizontal line indicates perfect

I'A thread initially busy waits to acquire a mutex, but if the wait time
is long the thread yields the CPU.

9th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’10)

USENIX Association

scalability: each core contributes the same amount of
work regardless of the total number of cores. In practice
one cannot expect a truly horizontal line: a single core
usually performs disproportionately well because there
is no inter-core sharing and because Linux uses a stream-
lined lock scheme with just one core, and the per-chip
caches become less effective as more active cores share
them. For most applications we see the stock kernel’s line
drop sharply because of kernel bottlenecks, and the PK
line drop more modestly.

5.1 Method

We run the applications that modify files on a tmpfs in-
memory file system to avoid waiting for disk I/O. The
result is that MOSBENCH stresses the kernel more it would
if it had to wait for the disk, but that the results are not
representative of how the applications would perform
in a real deployment. For example, a real mail server
would probably be bottlenecked by the need to write each
message durably to a hard disk. The purpose of these
experiments is to evaluate the Linux kernel’s multicore
performance, using the applications to generate a reason-
ably realistic mix of system calls.

We run experiments on a 48-core machine, with a Tyan
Thunder S4985 board and an M4985 quad CPU daughter-
board. The machine has a total of eight 2.4 GHz 6-core
AMD Opteron 8431 chips. Each core has private 64 Kbyte
instruction and data caches, and a 512 Kbyte private L2
cache. The cores on each chip share a 6 Mbyte L3 cache,
1 Mbyte of which is used for the HT Assist probe fil-
ter [7]. Each chip has 8 Gbyte of local off-chip DRAM.
A core can access its L1 cache in 3 cycles, its L2 cache in
14 cycles, and the shared on-chip L3 cache in 28 cycles.
DRAM access latencies vary, from 122 cycles for a core
to read from its local DRAM to 503 cycles for a core to
read from the DRAM of the chip farthest from it on the
interconnect. The machine has a dual-port Intel 82599
10Gbit Ethernet (IXGBE) card, though we use only one
port for all experiments. That port connects to an Ethernet
switch with a set of load-generating client machines.

Experiments that use fewer than 48 cores run with
the other cores entirely disabled. memcached, Apache,
Psearchy, and Metis pin threads to cores; the other ap-
plications do not. We run each experiment 3 times and
show the best throughput, in order to filter out unrelated
activity; we found the variation to be small.

5.2 Exim

To measure the performance of Exim 4.71, we configure
Exim to use tmp£s for all mutable files—spool files, log
files, and user mail files—and disable DNS and RFC1413
lookups. Clients run on the same machine as Exim. Each
repeatedly opens an SMTP connection to Exim, sends 10
separate 20-byte messages to a local user, and closes the
SMTP connection. Sending 10 messages per connection

700 T T T T T T T 4500

T T T
Stock - - -
PK —
600 PK user time —0—
\ PK system time —&—

— 4000
3500
' 3000
2500
2000

1500

CPU time (usec / message)

—{ 1000

Throughput (messages / sec / core)

= 500

0 | | | | | | | | | | | 0
1 4 8 12 16 20 24 28 32 36 40 44 48
Cores

Figure 4: Exim throughput and runtime breakdown.

prevents exhaustion of TCP client port numbers. Each
client sends to a different user to prevent contention on
user mail files. We use 96 client processes regardless of
the number of active cores; as long as there are enough
clients to keep Exim busy, the number of clients has little
effect on performance.

We modified and configured Exim to increase perfor-
mance on both the stock and PK kernels:

e Berkeley DB v4.6 reads /proc/stat to find the number
of cores. This consumed about 20% of the total run-
time, so we modified Berkeley DB to aggressively
cache this information.

e We configured Exim to split incoming queued mes-
sages across 62 spool directories, hashing by the
per-connection process ID. This improves scala-
bility because delivery processes are less likely to
create files in the same directory, which decreases
contention on the directory metadata in the kernel.

e We configured Exim to avoid an exec() per mail
message, using deliver drop_privilege.

Figure 4 shows the number of messages Exim can pro-
cess per second on each core, as the number of cores
varies. The stock and PK kernels perform nearly the
same on one core. As the number of cores increases, the
per-core throughput of the stock kernel eventually drops
toward zero. The primary cause of the throughput drop
is contention on a non-scalable kernel spin lock that se-
rializes access to the vfsmount table. Exim causes the
kernel to access the vEsmount table dozens of times for
each message. Exim on PK scales significantly better,
owing primarily to improvements to the vfsmount ta-
ble (Section 4.5) and the changes to the dentry cache
(Section 4.4).

Throughput on the PK kernel degrades from one to
two cores, while the system time increases, because of
the many kernel data structures that are not shared with
one core but must be shared (with cache misses) with

USENIX Association

9th USENIX Symposium on Operating Systems Design and Implementation (OSDI *10) 9

300000

250000

200000

150000

100000

Throughput (requests / sec / core)

50000 [~

0 | | | | | | | | | | |
1 4 8 12 16 20 24 28 32 36 40 44 48
Cores

Figure 5: memcached throughput.

two cores. The throughput on the PK kernel continues
to degrade; however, this is mainly due to application-
induced contention on the per-directory locks protecting
file creation in the spool directories. As the number of
cores increases, there is an increasing probability that
Exim processes running on different cores will choose the
same spool directory, resulting in the observed contention.

We foresee a potential bottleneck on more cores due
to cache misses when a per-connection process and the
delivery process it forks run on different cores. When
this happens the delivery process suffers caches misses
when it first accesses kernel data—especially data related
to virtual address mappings—that its parent initialized.
The result is that process destruction, which frees virtual
address mappings, and soft page fault handling, which
reads virtual address mappings, execute more slowly with
more cores. For the Exim configuration we use, however,
this slow down is negligible compared to slow down that
results from contention on spool directories.

5.3 memcached

We run a separate memcached 1.4.4 process on each
core to avoid application lock contention. Each server is
pinned to a separate core and has its own UDP port. Each
client thread repeatedly queries a particular memcached
instance for a non-existent key because this places higher
load on the kernel than querying for existing keys. There
are a total of 792 client threads running on 22 client
machines. Requests are 68 bytes, and responses are 64.
Each client thread sends a batch of 20 requests and waits
for the responses, timing out after 100 ms in case packets
are lost.

For both kernels, we use a separate hardware receive
and transmit queue for each core and configure the
IXGBE to inspect the port number in each incoming
packet header, place the packet on the queue dedicated to
the associated memcached’s core, and deliver the receive
interrupt to that core.

Figure 5 shows that memcached does not scale well on
the stock Linux kernel.

20000 —T—T T T T T 1 T T 1
Stock - - -
PK ——

PK user time —0—

PK system time —2—_] g()
15000 [~
: 60
10000 [~ |
S — 40
4 N

500000—o0— 6 6 v 6 o6 o0 o o o

CPU time (psec / request)

= 20

Throughput (requests / sec / core)

S T T T S S Y Y N A Sl o I8
I 4 8 12 16 20 24 28 32 36 40 44 48
Cores

Figure 6: Apache throughput and runtime breakdown.

One scaling problem occurs in the memory allocator.
Linux associates a separate allocator with each socket to
allocate memory from that chip’s attached DRAM. The
stock kernel allocates each packet from the socket nearest
the PCI bus, resulting in contention on that socket’s allo-
cator. We modified the allocation policy to allocate from
the local socket, which improved throughput by ~30%.

Another bottleneck was false read/write sharing of
IXGBE device driver data in the net.device and
device structures, resulting in cache misses for all cores
even on read-only fields. We rearranged both structures
to isolate critical read-only members to their own cache
lines. Removing a single falsely shared cache line in
net_device increased throughput by 30% at 48 cores.

The final bottleneck was contention on the dst_entry
structure’s reference count in the network stack’s destina-
tion cache, which we replaced with a sloppy counter (see
Section 4.3).

The “PK” line in Figure 5 shows the scalability of
memcached with these changes. The per core throughput
drops off after 16 cores. We have isolated this bottleneck
to the IXGBE card itself, which appears to handle fewer
packets as the number of virtual queues increases. As a
result, it fails to transmit packets at line rate even though
there are always packets queued in the DMA rings.

To summarize, while memcached scales poorly, the
bottlenecks caused by the Linux kernel were fixable and
the remaining bottleneck lies in the hardware rather than
in the Linux kernel.

5.4 Apache

A single instance of Apache running on stock Linux scales
very poorly because of contention on a mutex protecting
the single accept socket. Thus, for stock Linux, we run
a separate instance of Apache per core with each server
running on a distinct port. Figure 6 shows that Apache
still scales poorly on the stock kernel, even with separate
Apache instances.

For PK, we run a single instance of Apache 2.2.14 on
one TCP port. Apache serves a single static file from an

10

9th USENIX Symposium on Operating Systems Design and Implementation (OSDI *10)

USENIX Association

ext3 file system; the file resides in the kernel buffer cache.
We serve a file that is 300 bytes because transmitting a
larger file exhausts the available 10 Gbit bandwidth at a
low server core count. Each request involves accepting a
TCP connection, opening the file, copying its content to a
socket, and closing the file and socket; logging is disabled.
We use 58 client processes running on 25 physical client
machines (many clients are themselves multi-core). For
each active server core, each client opens 2 TCP connec-
tions to the server at a time (so, for a 48-core server, each
client opens 96 TCP connections).

All the problems and solutions described in Section 5.3
apply to Apache, as do the modifications to the dentry
cache for both files and sockets described in Section 4.
Apache forks off a process per core, pinning each new pro-
cess to a different core. Each process dedicates a thread
to accepting connections from the shared listening socket
and thus, with the accept queue changes described in Sec-
tion 4.2, each connection is accepted on the core it initially
arrives on and all packet processing is performed local to
that core. The PK numbers in Figure 6 are significantly
better than Apache running on the stock kernel; however,
Apache’s throughput on PK does not scale linearly.

Past 36 cores, performance degrades because the net-
work card cannot keep up with the increasing workload.
Lack of work causes the server idle time to reach 18% at
48 cores. At 48 cores, the network card’s internal diagnos-
tic counters show that the card’s internal receive packet
FIFO overflows. These overflows occur even though the
clients are sending a total of only 2 Gbits and 2.8 million
packets per second when other independent tests have
shown that the card can either receive upwards of 4 Gbits
per second or process 5 million packets per second.

We created a microbenchmark that replicates the
Apache network workload, but uses substantially less
CPU time on the server. In the benchmark, the client ma-
chines send UDP packets as fast as possible to the server,
which also responds with UDP packets. The packet mix
is similar to that of the Apache benchmark. While the mi-
crobenchmark generates far more packets than the Apache
clients, the network card ultimately delivers a similar num-
ber of packets per second as in the Apache benchmark
and drops the rest. Thus, at high core counts, the network
card is unable to deliver additional load to Apache, which
limits its scalability.

5.5 PostgreSQL

We evaluate Linux’s scalability running PostgreSQL 8.3.9
using both a 100% read workload and a 95%/5%
read/write workload. The database consists of a sin-
gle indexed 600 Mbyte table of 10,000,000 key-value
pairs stored in tmpfs. We configure PostgreSQL to use
a 2 Gbyte application-level cache because PostgreSQL
protects its cache free-list with a single lock and thus

2500077171 T T T T T T_ T T %®
Stock - - -
Stock + mod PG - = = gp
PPK+ mod PG ——
. | user time —o—
g 20000 PK system time —&—— 70
g L ~
< N g
3 . 60 %
< 15000 3
2 04
g 2
E) A\ — 40 o
5 10000 [~ \ 5
£ \ 302
5 \ 30 o
2 | ”
E 5000 - \ 1
~o << 10
A A A__A A—A A A A A A

0
1 4 8 12 16 20 24 28 32 36 40 44 48
Cores

Figure 7: PostgreSQL read-only workload throughput and runtime
breakdown.

2500077171 T T T T T T_ T 1 %®
Stock - - -
Stock + mod PG - = = gq
Pl;(K+ mod PG ——
. user time —o—
g 20000 PK system time —2&—=3 70
£ ~
38 g5
é 60 ES
< 15000 3
2 04
‘ H
E) \ —1 40 o
2 10000 |- Y £
Eﬂ “ -1 30 E
g \ ”
E 5000 - O
O
S-=10
A A—A A A A A A A A A

0
1 4 8 12 16 20 24 28 32 36 40 44 48
Cores

Figure 8: PostgreSQL read/write workload throughput and runtime
breakdown.

scales poorly with smaller caches. While we do not pin
the PostgreSQL processes to cores, we do rely on the
IXGBE driver to route packets from long-lived connec-
tions directly to the cores processing those connections.

Our workload generator simulates typical high-
performance PostgreSQL configurations, where middle-
ware on the client machines aggregates multiple client
connections into a small number of connections to the
server. Our workload creates one PostgreSQL connection
per server core and sends queries (selects or updates) in
batches of 256, aggregating successive read-only transac-
tions into single transactions. This workload is intended to
minimize application-level contention within PostgreSQL
in order to maximize the stress PostgreSQL places on the
kernel.

The “Stock” line in Figures 7 and 8 shows that Post-
greSQL has poor scalability on the stock kernel. The first
bottleneck we encountered, which caused the read/write
workload’s total throughput to peak at only 28 cores, was
due to PostgreSQL’s design. PostgreSQL implements
row- and table-level locks atop user-level mutexes; as
a result, even a non-conflicting row- or table-level lock
acquisition requires exclusively locking one of only 16
global mutexes. This leads to unnecessary contention for
non-conflicting acquisitions of the same lock—as seen in

USENIX Association

9th USENIX Symposium on Operating Systems Design and Implementation (OSDI *10) 11

the read/write workload—and to false contention between
unrelated locks that hash to the same exclusive mutex. We
address this problem by rewriting PostgreSQL’s row- and
table-level lock manager and its mutexes to be lock-free
in the uncontended case, and by increasing the number of
mutexes from 16 to 1024.

The “Stock + mod PG” line in Figures 7 and 8 shows
the results of this modification, demonstrating improved
performance out to 36 cores for the read/write workload.
While performance still collapses at high core counts,
the cause of this has shifted from excessive user time to
excessive system time. The read-only workload is largely
unaffected by the modification as it makes little use of
row- and table-level locks.

With modified PostgreSQL on stock Linux, through-
put for both workloads collapses at 36 cores, with sys-
tem time rising from 1.7 pseconds/query at 32 cores to
322 pseconds/query at 48 cores. The main reason is the
kernel’s 1seek implementation. PostgreSQL calls 1seek
many times per query on the same two files, which in turn
acquires a mutex on the corresponding inode. Linux’s
adaptive mutex implementation suffers from starvation
under intense contention, resulting in poor performance.
However, the mutex acquisition turns out not to be neces-
sary, and PK eliminates it.

Figures 7 and 8 show that, with PK’s modified 1seek
and smaller contributions from other PK changes, Post-
greSQL performance no longer collapses. On PK, Post-
greSQL’s overall scalability is primarily limited by con-
tention for the spin lock protecting the buffer cache page
for the root of the table index. It spends little time in the
kernel, and is not limited by Linux’s performance.

5.6 gmake

We measure the performance of parallel gmake by build-
ing the object files of Linux 2.6.35-rc5 for x86_64. All
input source files reside in the buffer cache, and the output
files are written to tmpfs. We set the maximum number
of concurrent jobs of gmake to twice the number of cores.

Figure 9 shows that gmake on 48 cores achieves ex-
cellent scalability, running 35 times faster on 48 cores
than on one core for both the stock and PK kernels. The
PK kernel shows slightly lower system time owing to the
changes to the dentry cache. gmake scales imperfectly
because of serial stages at the beginning of the build and
straggling processes at the end.

gmake scales so well in part because much of the CPU
time is in the compiler, which runs independently on
each core. In addition, Linux kernel developers have
thoroughly optimized kernel compilation, since it is of
particular importance to them.

5.7 Psearchy/pedsort

Figure 10 shows the runtime for different versions of
pedsort indexing the Linux 2.6.35-rc5 source tree, which

N
o
=
S

=
=]
S

6 PK user time —0—"|
s PK system time —&—

Throughput (builds / hour / core)
| | |
[(%) B W [=)
[=3 (=3 =3 (=3 (=3
(=] (=] (=] (=) (=]
CPU time (sec / build)

T
|
=)
S

0 | | | | | | | | | | | 0
1 4 8§ 12 16 20 24 28 32 36 40 44 48
Cores

Figure 9: gmake throughput and runtime breakdown.

T T T T T T T | T T
Stock + Threads - - -
50— Stock + Procs = = =
Stock + Procs RR ——
RR user time —0—
RR system time —24——

- 120

40

e 60

Throughput (jobs / hour / core)
|
CPU time (sec / job)

o S o o oS S R 0
20 24 28 32 36 40 44 48
Cores

1 4 8 12 16
Figure 10: pedsort throughput and runtime breakdown.

consists of 368 Mbyte of text across 33,312 source files.
The input files are in the buffer cache and the output
files are written to tmpfs. Each core uses a 48 Mbyte
word hash table and limits the size of each output index
to 200,000 entries (see Section 3.6). As a result, the
total work performed by pedsort and its final output are
independent of the number of cores involved.

The initial version of pedsort used a single process with
one thread per core. The line marked “Stock + Threads” in
Figure 10 shows that it scales badly. Most of the increase
in runtime is in system time: for 1 core the system time
is 2.3 seconds, while at 48 cores the total system time is
41 seconds.

Threaded pedsort scales poorly because a per-process
kernel mutex serializes calls to mmap and munmap for a
process’ virtual address space. pedsort reads input files
using libc file streams, which access file contents via
mmap, resulting in contention over the shared address
space, even though these memory-mapped files are logi-
cally private to each thread in pedsort. We avoided this
problem by modifying pedsort to use one process per
core for concurrency, eliminating the mmap contention by
eliminating the shared address space. This modification
involved changing about 10 lines of code in pedsort. The
performance of this version on the stock kernel is shown
as “Stock + Procs” in Figure 10. Even on a single core,

12

9th USENIX Symposium on Operating Systems Design and Implementation (OSDI *10)

USENIX Association

the multi-process version outperforms the threaded ver-
sion because any use of threads forces glibc to use slower,
thread-safe variants of various library functions.

With a small number of cores, the performance of the
process version depends on how many cores share the per-
socket L3 caches. Figure 10’s “Stock + Procs” line shows
performance when the active cores are spread over few
sockets, while the “Stock + Procs RR” shows performance
when the active cores are spread evenly over sockets. As
corroborated by hardware performance counters, the latter
scheme provides higher performance because each new
socket provides access to more total L3 cache space.

Using processes, system time remains small, so the ker-
nel is not a limiting factor. Rather, as the number of cores
increases, pedsort spends more time in the glibc sorting
function msort_with_tmp, which causes the decreasing
throughput and rising user time in Figure 10. As the num-
ber of cores increases and the total working set size per
socket grows, msort_with_tmp experiences higher L3
cache miss rates. However, despite its memory demands,
msort_with_tmp never reaches the DRAM bandwidth
limit. Thus, pedsort is bottlenecked by cache capacity.

5.8 Metis

We measured Metis performance by building an inverted
index from a 2 Gbyte in-memory file. As for Psearchy,
we spread the active cores across sockets and thus have
access to the machine’s full L3 cache space at 8 cores.

The “Stock + 4 KB pages” line in Figure 11 shows
Metis’ original performance. As the number of cores
increases, the per-core performance of Metis decreases.
Metis allocates memory with mmap, which adds the new
memory to a region list but defers modifying page ta-
bles. When a fault occurs on a new mapping, the kernel
locks the entire region list with a read lock. When many
concurrent faults occur on different cores, the lock itself
becomes a bottleneck, because acquiring it even in read
mode involves modifying shared lock state.

We avoided this problem by mapping memory with
2 Mbyte super-pages, rather than 4 Kbyte pages, using
Linux’s hugetlbfs. This results in many fewer page
faults and less contention on the region list lock. We
also used finer-grained locking in place of a global mutex
that serialized super-page faults. The “PK + 2MB pages”
line in Figure 11 shows that use of super-pages increases
performance and significantly reduces system time.

With super-pages, the time spent in the kernel becomes
negligible and Metis’ scalability is limited primarily by
the DRAM bandwidth required by the reduce phase. This
phase is particularly memory-intensive and, at 48 cores,
accesses DRAM at 50.0 Gbyte/second, just shy of the
maximum achievable throughput of 51.5 Gbyte/second
measured by our microbenchmarks.

BT T T T T T T T T T T 200
Stock + 4KB pages - - -
PK + 2MB pages
30 Stock user time - A -
~ PK user time —0—
[T system time —2— _|
3 150
8 25 =
5 g
E s
= 20 3
2 z
-é — 100 2
N =
E] 3
s 10
E — 50
=
5F a- A -
A A A AT
GJ--A-A-'Q"A"Q' A A A N N —H—=a
1 4 8 12 16 20 24 28 32 36 40 44 48

Cores

Figure 11: Metis throughput and runtime breakdown.

Application | Bottleneck

Exim App: Contention on spool directories
memcached | HW: Transmit queues on NIC
Apache HW: Receive queues on NIC
PostgreSQL | App: Application-level spin lock
gmake App: Serial stages and stragglers
pedsort HW: Cache capacity

Metis HW: DRAM throughput

Figure 12: Summary of the current bottlenecks in MOSBENCH, at-
tributed either to hardware (HW) or application structure (App).

5.9 Evaluation summary

Figure 3 summarized the significant scalability improve-
ments resulting from our changes. Figure 12 summarizes
the bottlenecks that limit further scalability of MOSBENCH
applications. In each case, the application is bottle-
necked by either shared hardware resources or application-
internal scalability limits. None are limited by Linux-
induced bottlenecks.

6 DISCUSSION

The results from the previous section show that the MOS-
BENCH applications can scale well to 48 cores, with mod-
est changes to the applications and to the Linux kernel.
Different applications or more cores are certain to reveal
more bottlenecks, just as we encountered bottlenecks at
48 cores that were not important at 24 cores. For exam-
ple, the costs of thread and process creation seem likely
to grow with more cores in the case where parent and
child are on different cores. Given our experience scaling
Linux to 48 cores, we speculate that fixing bottlenecks
in the kernel as the number of cores increases will also
require relatively modest changes to the application or
to the Linux kernel. Perhaps a more difficult problem is
addressing bottlenecks in applications, or ones where ap-
plication performance is not bottlenecked by CPU cycles,
but by some other hardware resource, such as DRAM
bandwidth.

Section 5 focused on scalability as a way to increase
performance by exploiting more hardware, but it is usu-
ally also possible to increase performance by exploiting

USENIX Association

9th USENIX Symposium on Operating Systems Design and Implementation (OSDI *10) 13

a fixed amount of hardware more efficiently. Techniques
that a number of recent multicore research operating sys-
tems have introduced (such as address ranges, dedicating
cores to functions, shared memory for inter-core message
passing, assigning data structures carefully to on-chip
caches, etc. [11, 15, 53]) could apply equally well to
Linux, improving its absolute performance and benefiting
certain applications. In future work, we would like to
explore such techniques in Linux.

One benefit of using Linux for multicore research is that
it comes with many applications and has a large developer
community that is continuously improving it. However,
there are downsides too. For example, if future processors
don’t provide high-performance cache coherence, Linux’s
shared-memory-intensive design may be an impediment
to performance.

7 CONCLUSION

This paper analyzes the scaling behavior of a traditional
operating system (Linux 2.6.35-rc5) on a 48-core com-
puter with a set of applications that are designed for par-
allel execution and use kernel services. We find that we
can remove most kernel bottlenecks that the applications
stress by modifying the applications or kernel slightly.
Except for sloppy counters, most of our changes are ap-
plications of standard parallel programming techniques.
Although our study has a number of limitations (e.g., real
application deployments may be bottlenecked by 1/0), the
results suggest that traditional kernel designs may be com-
patible with achieving scalability on multicore comput-
ers. The MOSBENCH applications are publicly available
athttp://pdos.csail.mit.edu/mosbench/, so that
future work can investigate this hypothesis further.

ACKNOWLEDGMENTS

We thank the anonymous reviewers and our shepherd,
Brad Chen, for their feedback. This work was partially
supported by Quanta Computer and NSF through award
numbers 0834415 and 0915164. Silas Boyd-Wickizer is
partially supported by a Microsoft Research Fellowship.
Yandong Mao is partially supported by a Jacobs Presi-
dential Fellowship. This material is based upon work
supported under a National Science Foundation Graduate
Research Fellowship.

REFERENCES

[1] Apache HTTP Server, May 2010.
httpd.apache.org/.

http://

[2] Exim, May 2010. http://www.exim.org/.

[3] Memcached, May http://

memcached.org/.

2010.

[4] PostreSQL, May 2010.
www.postgresql.org/.

http://

[5] The search for fast, scalable counters, May 2010.
http://lwn.net/Articles/170003/.

[6] J. Aas. Understanding the Linux 2.6.8.1
CPU scheduler, February 2005. http://
josh.trancesoftware.com/linux/.

[7] AMD, Inc. Six-core AMD opteron processor
features. http://www.amd.com/us/products/
server/processors/six-core-opteron/
Pages/six-core-opteron-key-architectural
-features.aspx.

[8] T. E. Anderson, B. N. Bershad, E. D. Lazowska,
and H. M. Levy. Scheduler activations: Effective
kernel support for the user-level management of
parallelism. In Proc. of the 13th SOSP, pages 95—
109, 1991.

[9] J. Appavoo, D. D. Silva, O. Krieger, M. Auslander,
M. Ostrowski, B. Rosenburg, A. Waterland, R. W.
Wisniewski, J. Xenidis, M. Stumm, and L. Soares.
Experience distributing objects in an SMMP OS.
ACM Trans. Comput. Syst., 25(3):6, 2007.

[10] K. Asanovic, R. Bodik, J. Demmel, T. Keaveny,
K. Keutzer, J. Kubiatowicz, N. Morgan, D. Pat-
terson, K. Sen, J. Wawrzynek, D. Wessel, and
K. Yelick. A view of the parallel computing land-
scape. Commun. ACM, 52(10):56-67, 2009.

[11] A. Baumann, P. Barham, P.-E. Dagand, T. Haris,
R. Isaacs, S. Peter, T. Roscoe, A. Schiipbach, and
A. Singhania. The Multikernel: a new OS architec-
ture for scalable multicore systems. In Proc of the
22nd SOSP, Big Sky, MT, USA, Oct 2009.

[12] B. N. Bershad, T. E. Anderson, E. D. Lazowska,
and H. M. Levy. Lightweight remote procedure call.
ACM Trans. Comput. Syst., 8(1):37-55, 1990.

[13] D. L. Black. Scheduling support for concurrency
and parallelism in the Mach operating system. Com-
puter, 23(5):35-43, 1990.

[14] W. Bolosky, R. Fitzgerald, and M. Scott. Simple but
effective techniques for NUMA memory manage-
ment. In Proc. of the 12th SOSP, pages 19-31, New
York, NY, USA, 1989. ACM.

[15] S. Boyd-Wickizer, H. Chen, R. Chen, Y. Mao,
F. Kaashoek, R. Morris, A. Pesterev, L. Stein,
M. Wu, Y. D. Y. Zhang, and Z. Zhang. Corey: An
operating system for many cores. In Proc. of the 8th
OSDI, December 2008.

14

9th USENIX Symposium on Operating Systems Design and Implementation (OSDI *10)

USENIX Association

[16]

(17]

(18]

(19]

(20]

(21]

(22]

(23]

[24]

[25]

(26]

[27]

(28]

[29]

R. Bryant, J. Hawkes, J. Steiner, J. Barnes, and
J. Higdon. Scaling linux to the extreme. In Proceed-
ings of the Linux Symposium 2004, pages 133-148,
Ottawa, Ontario, June 2004.

B. Cantrill and J. Bonwick. Real-world concurrency.
Commun. ACM, 51(11):34-39, 2008.

J. Corbet. The lockless page cache, May 2010.
http://lwn.net/Articles/291826/.

A. L. Cox and R. J. Fowler. The implementation of
a coherent memory abstraction on a NUMA multi-
processor: Experiences with platinum. In Proc. of
the 12th SOSP, pages 32-44, 1989.

J. Dean and S. Ghemawat. MapReduce: simplified
data processing on large clusters. Commun. ACM,
51(1):107-113, 2008.

M. Dobrescu, N. Egi, K. Argyraki, B.-G. Chun,
K. Fall, G. Iannaccone, A. Knies, M. Manesh, and
S. Ratnasamy. RouteBricks: Exploiting parallelism
to scale software routers. In Proc of the 22nd SOSP,
Big Sky, MT, USA, Oct 2009.

F. Ellen, Y. Lev, V. Luchango, and M. Moir. SNZI:
Scalable nonzero indicators. In PODC 2007, Port-
land, Oregon, USA, Aug. 2007.

GNU Make, May 2010. http://www.gnu.org/
software/make/.

C. Gough, S. Siddha, and K. Chen. Kernel
scalability—expanding the horizon beyond fine
grain locks. In Proceedings of the Linux Sympo-
sium 2007, pages 153-165, Ottawa, Ontario, June
2007.

T. Herbert. rfs: receive flow steering, September
2010. http://lwn.net/Articles/381955/.

T. Herbert. rps: receive packet steering, September
2010. http://lwn.net/Articles/361440/.

M. Herlihy. Wait-free synchronization. ACM Trans.
Program. Lang. Syst., 13(1):124-149, 1991.

J. Jackson. Multicore requires OS rework
Windows architect advises. PCWorld mag-
azine, 2010. http://www.pcworld.com/

businesscenter/article/191914/
multicore_requires_os_rework_windows
_architect_advises.html.

Z. Jia, Z. Liang, and Y. Dai. Scalability evaluation
and optimization of multi-core SIP proxy server. In
Proc. of the 37th ICPP, pages 43-50, 2008.

[30]

[31]

(32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

A. R. Karlin, K. Li, M. S. Manasse, and S. S. Ow-
icki. Empirical studies of competitive spinning for a
shared-memory multiprocessor. In Proc. of the 13th
SOSP, pages 41-55, 1991.

A. Kleen. An NUMA API for Linux, August
2004. http://www.firstfloor.org/ " andi/
numa.html.

A. Kleen. Linux multi-core scalability. In Proceed-
ings of Linux Kongress, October 2009.

J. Kuskin, D. Ofelt, M. Heinrich, J. Heinlein, R. Si-
moni, K. Gharachorloo, J. Chapin, D. Nakabhira,
J. Baxter, M. Horowitz, A. Gupta, M. Rosenblum,
and J. Hennessy. The Stanford FLASH multipro-
cessor. In Proc. of the 21st ISCA, pages 302-313,
1994.

R. P. LaRowe, Jr.,, C. S. Ellis, and L. S. Kaplan.
The robustness of NUMA memory management. In
Proc. of the 13th SOSP, pages 137-151, 1991.

J. Li, B. T. Loo, J. M. Hellerstein, M. F. Kaashoek,
D. Karger, and R. Morris. On the feasibility of peer-
to-peer web indexing and search. In Proc. of the 2nd
IPTPS, Berkeley, CA, February 2003.

Linux 2.6.35-rc5 source, July
2010. Documentation/scheduler/
sched-design-CFS.txt.

Linux kernel mailing list, May 2010. http://
kerneltrap.org/node/8059.

Y. Mao, R. Morris, and F. Kaashoek. Optimizing
MapReduce for multicore architectures. Technical
Report MIT-CSAIL-TR-2010-020, MIT, 2010.

P. E. McKenney, D. Sarma, A. Arcangeli, A. Kleen,
O. Krieger, and R. Russell. Read-copy update. In
Proceedings of the Linux Symposium 2002, pages
338-367, Ottawa, Ontario, June 2002.

P. E. McKenney, D. Sarma, and M. Soni. Scal-
ing dcache with rcu, Jan. 2004. http://
www.linuxjournal.com/article/7124.

J. M. Mellor-Crummey and M. L. Scott. Algorithms
for scalable synchronization on shared-memory mul-
tiprocessors. ACM Trans. Comput. Syst., 9(1):21-65,
1991.

E. M. Nahum, D. J. Yates, J. F. Kurose, and
D. Towsley. Performance issues in parallelized net-
work protocols. In Proc. of the 1st OSDI, page 10,
Berkeley, CA, USA, 1994. USENIX Association.

USENIX Association

9th USENIX Symposium on Operating Systems Design and Implementation (OSDI *10) 15

[43]

[44]

[45]

[40]

[47]

(48]

[49]

(50]

[51]

D. Patterson. The parallel revolution has started:
are you part of the solution or the prolem? In
USENIX ATEC, 2008. www.usenix.org/event/
usenix08/tech/slides/patterson.pdf.

A. Pesterev, N. Zeldovich, and R. T. Morris. Lo-
cating cache performance bottlenecks using data
profiling. In Proceedings of the ACM EuroSys Con-
ference (EuroSys 2010), Paris, France, April 2010.

C. Ranger, R. Raghuraman, A. Penmetsa, G. Brad-
ski, and C. Kozyrakis. Evaluating MapReduce for
multi-core and multiprocessor system. In Proceed-
ings of HPCA. IEEE Computer Society, 2007.

C. Schimmel. UNIX systems for modern architec-
tures: symmetric multiprocessing and caching for
kernel programmers. Addison-Wesley, 1994.

M. D. Schroeder and M. Burrows. Performance
of Firefly RPC. In Proc. of the 12th SOSP, pages
83-90, 1989.

J. Stribling, J. Li, I. G. Councill, M. F. Kaashoek,
and R. Morris. Overcite: A distributed, cooperative
citeseer. In Proc. of the 3rd NSDI, San Jose, CA,
May 2006.

J. H. Tseng, H. Yu, S. Nagar, N. Dubey, H. Franke,
P. Pattnaik, H. Inoue, and T. Nakatani. Performance
studies of commercial workloads on a multi-core
system. IEEE Workload Characterization Sympo-
sium, pages 57-65, 2007.

R. Vaswani and J. Zahorjan. The implications of
cache affinity on processor scheduling for multipro-
grammed, shared memory multiprocessors. In Proc.
of the 13th SOSP, pages 2640, 1991.

B. Veal and A. Foong. Performance scalability of
a multi-core web server. In Proceedings of the 3rd

[52]

(53]

[54]

[55]

[56]

[57]

ACM/IEEE Symposium on Architecture for Network-
ing and Communications Systems, pages 5760,
New York, NY, USA, 2007.

B. Verghese, S. Devine, A. Gupta, and M. Rosen-
blum. Operating system support for improving data
locality on CC-NUMA compute servers. In Proc.
of the 7th ASPLOS, pages 279-289, New York, NY,
USA, 1996. ACM.

D. Wentzlaff and A. Agarwal. Factored operating
systems (fos): the case for a scalable operating
system for multicores. SIGOPS Oper. Syst. Rev.,
43(2):76-85, 2009.

C. Yan, Y. Chen, and S. Yuanchun. Parallel scalabil-

ity comparison of commodity operating systems on
large scale multi-cores. In Proceedings of the work-

shop on the interaction between Operating Systems
and Computer Architecture (WIOSCA 2009).

C. Yan, Y. Chen, and S. Yuanchun. OSMark: A
benchmark suite for understanding parallel scalabil-
ity of operating systems on large scale multi-cores.
In 2009 2nd International Conference on Computer

Science and Information Technology, pages 313—
317, 2009.

C. Yan, Y. Chen, and S. Yuanchun. Scaling OLTP
applications on commodity multi-core platforms.
In 2010 IEEE International Symposium on Perfor-
mance Analysis of Systems & Software (ISPASS),
pages 134-143, 2010.

M. Young, A. Tevanian, R. F. Rashid, D. B. Golub,
J. L. Eppinger, J. Chew, W. J. Bolosky, D. L. Black,
and R. V. Baron. The duality of memory and commu-
nication in the implementation of a multiprocessor
operating system. In Proc. of the 11th SOSP, pages
63-76, 1987.

16

9th USENIX Symposium on Operating Systems Design and Implementation (OSDI *10)

USENIX Association

Trust and Protection in the Illinois Browser Operating System

Shuo Tang, Haohui Mai, Samuel T. King
University of Illlinois at Urbana-Champaign

Abstract

Current web browsers are complex, have enormous
trusted computing bases, and provide attackers with easy
access to modern computer systems. In this paper we in-
troduce the Illinois Browser Operating System (IBOS),
a new operating system and a new browser that re-
duces the trusted computing base for web browsers. In
our architecture we expose browser-level abstractions
at the lowest software layer, enabling us to remove al-
most all traditional OS components and services from
our trusted computing base by mapping browser abstrac-
tions to hardware abstractions directly. We show that this
architecture is flexible enough to enable new browser se-
curity policies, can still support traditional applications,
and adds little overhead to the overall browsing experi-
ence.

1 Introduction

Web-based applications (web apps), browsers, and op-
erating systems have become popular targets for attack-
ers of computer systems. Vulnerabilities in web apps
are widespread and increasing. For example, cross-site
scripting (XSS), which is effectively a form of script in-
jection into a web app, recently overtook the ubiquitous
buffer overflow as the most common security vulnerabil-
ity [50]. Vulnerabilities in web browsers are less com-
mon than web app vulnerabilities, but still occur often.
For example, in 2009 Internet Explorer, Chrome, Safari,
and Firefox had 349 new security vulnerabilities [4], and
attackers exploit browsers commonly [53, 37, 42, 41, 4].
Vulnerabilities in libraries, system services, and oper-
ating systems are less common than vulnerabilities in
browsers, but are still problematic for modern systems.
For example, glibc, GTK+, X, and Linux had 114 new
security vulnerabilities in 2009 [1], and in 2009 the most
commonly attacked vulnerability was a remote code ex-
ecution bug in the Windows kernel [4].

However, not all attacks on web apps, browsers, and
operating systems are equally virulent. At the top of the
computer stack, attacks on web apps, such as XSS, oper-
ate within current browser security policies that contain
the damage to the vulnerable web app. Moving down
the computer stack, attacks on browsers can cause more
damage because a successful attack gives the attacker ac-
cess to browser data for all web apps and access to other
resources on the system. At the lowest layers of the
computer stack, attacks on libraries, shared system ser-
vices, and operating systems are the most serious attacks
because attackers can access arbitrary states and events,
giving them complete control of the system.

Overall, these trends indicate that vulnerabilities
higher in the computer stack are more common, but vul-
nerabilities lower in the computer stack provide attack-
ers with more control and are more damaging. In this
paper we focus on preventing and containing attacks on
browsers, libraries, system services, and operating sys-
tems — the lower layers of the computer stack.

Current research efforts into more secure web
browsers help improve the security of browsers, but
remain susceptible to attacks on lower layers of the
computer stack. The OP web browser [26], Gazelle
[52], Chrome [11], and ChromeOS [25] propose new
browser architectures for separating the functionality
of the browser from security mechanisms and policies.
However, these more secure web browsers are all built
on top of commodity operating systems and include
complex user-mode libraries and shared system services
within their trusted computing base (TCB). Even kernel
designs with strong isolation between OS components
(e.g., microkernels [24, 27, 28] and information-flow ker-
nels [18, 57, 33]) still have OS services that are shared
by all applications, which attackers can compromise and
still cause damage. Here are a few ways that an attacker
can still cause damage to more secure web browsers built
on top of traditional OSes:

USENIX Association

9th USENIX Symposium on Operating Systems Design and Implementation (OSDI *10) 17

e A compromised Ethernet driver can send sensitive
HTTP data (e.g., passwords or login cookies) to any
remote host or change the HTTP response data be-
fore routing it to the network stack.

e A compromised storage module can modify or steal
any browser related persistent data.

e A compromised network stack can tamper with any
network connection or send sensitive HTTP data to
an attacker.

e A compromised window manager can draw any
content on top of a web page to deploy visual at-
tacks, such as phishing.

In this paper we describe IBOS, an operating sys-
tem and a browser co-designed to reduce drastically the
TCB for web browsers and to simplify browser-based
systems. Our key insight is that our lowest-layer soft-
ware can expose browser-level abstractions, rather than
general-purpose OS abstractions, to provide vastly im-
proved security properties for the browser without affect-
ing the TCB for traditional applications. Some examples
of browser abstractions are cookies for persistent storage,
hypertext transfer protocol (HTTP) connections for net-
work /O, and tabs for displaying web pages. To support
traditional applications, we build UNIX-like abstractions
on top of our browser abstractions.

IBOS improves on past approaches by removing typi-
cally shared OS components and system services from
our browser’s TCB, including device drivers, network
protocol implementations, the storage stack, and win-
dow management software. All of these components run
above a trusted reference monitor [9], which enforces our
security policies. These components operate on browser-
level abstractions, allowing us to map browser security
policies down to the lowest-level hardware directly and
to remove drivers and system services from our TCB.

This architecture is a stark contrast to current systems
where all applications layer application-specific abstrac-
tions on top of general-purpose OS abstractions, inherit-
ing the cruft needed to implement and access these gen-
eral OS abstractions. By exposing application-specific
abstractions at the OS layer, we can cut through complex
software layers for one particular application without af-
fecting traditional applications adversely, which still run
on top of general OS abstractions and still inherit cruft.
We choose to illustrate this principle using a web browser
because browsers are used widely and have been prone
to security failures recently. Our goal is to build a sys-
tem where a user can visit a trusted web site safely, even
one or more of the components on the system have been
compromised.

Our contributions are:

e IBOS is the first system to improve browser and OS
security by making browser-level abstractions first-
class OS abstractions, providing a clean separation
between browser functionality and browser security.

e We show that having low-layer software expose
browser abstractions enables us to remove almost
all traditional OS components from our TCB, in-
cluding device drivers and shared OS services, al-
lowing IBOS to withstand a wide range of attacks.

e We demonstrate that IBOS can still support tradi-
tional applications that interact with the browser and
shared OS services without compromising the secu-
rity of our system.

2 The IBOS architecture

This paper presents the design and implementation of
the IBOS operating system and browser that reduce the
TCB for browsing drastically. Our primary goals are to
enforce today’s browser security policies with a small
TCB, without restricting functionality, and without slow-
ing down performance. To withstand attacks, IBOS must
ensure any compromised component (1) cannot tamper
with data it should not have access to, (2) cannot leak
sensitive information to third parties, and (3) cannot ac-
cess components operating on behalf of different web
sites.

In this section we discuss the design principles that
guide our design and the overall system architecture. In
Section 4 we discuss the security policies and mecha-
nisms we use.

2.1 Design principles

We embrace microkernel [27], Exokernel [19], and
safety kernel design principles in our overall architec-
ture. By combining these principles with our insight
about exposing browser abstractions at the lowest soft-
ware layer we hope to converge on a more trustworthy
browser design. Five key principles guide our design:

1. Make security decisions at the lowest layer of soft-
ware. By pushing our security decisions to the low-
est layers we hope to avoid including the millions
of lines of library and OS code in our TCB.

2. Use controlled sharing between web apps and tra-
ditional apps. Sharing data between web apps and
traditional apps is a fundamental functionality of
today’s practical systems and should be supported.
However, this sharing should be facilitated through
a narrow interface to prevent misuse.

18

9th USENIX Symposium on Operating Systems Design and Implementation (OSDI *10)

USENIX Association

maps.comt) (* {bingcomi) (" iuc.edu
Traditional Web Page Web Page Web Page
Applications Instance Instance Instance
§| Ul || Storage |U Net. Processes |§
[vowemsoomer [.. [NICDriver |
Reference Monitor __
14| IBOS Kernel | Net. Manager
| Hardware Moo | |[Mowseren | NIC i

Figure 1: Overall IBOS architecture. Our system con-
tains user-mode drivers, browsers APl managers, web
page instances, and traditional processes. To manage the
interactions between these components, we use a refer-
ence monitor that runs within our IBOS kernel. Shaded
regions make up the TCB.

3. Maintain compatibility with current browser secu-
rity policies. Our primary goal is to improve the
enforcement of current browser policies without
changing current web-based applications.

4. Expose enough browser states and events to enable
new browser security policies. In addition to en-
forcing current browser policies, we would like our
architecture to adapt easily to future browser poli-
cies.

5. Avoid rule-based OS sandboxing for browser com-
ponents. Fundamentally, rule-based OS sandbox-
ing is about restricting unused or overly permis-
sive interfaces exposed by today’s operating sys-
tems. However, sandboxing systems can be com-
plex (the Ubuntu 10.04 SELinux reference policy
uses over 104K lines of policy code) and difficult to
implement correctly [23, 51]. If our architecture re-
quires OS sandboxing for browser components then
we should rethink the architecture.

2.2 Overall architecture

Figure 1 shows the overall IBOS architecture. The IBOS
architecture uses a basic microkernel approach with a
thin kernel for managing hardware and facilitating mes-
sage passing between processes. The system includes
user-mode device drivers for interacting directly with
hardware devices, such as network interface cards (NIC),
and browser API managers for accessing the drivers and

implementing browser abstractions. The key browser
abstractions that the browser API managers implement
are HTTP requests, cookies and local storage for stor-
ing persistent data, and tabs for displaying user-interface
(UI) content. Web apps use these abstractions directly
to implement browser functionality, and traditional ap-
plications (traditional apps) use a UNIX layer to access
UNIX-like abstractions on top of these browser abstrac-
tions.

2.2.1 The IBOS kernel

Our IBOS kernel is the software TCB for the browser and
includes resource management functionality and a refer-
ence monitor for security enforcement. The IBOS kernel
also handles many traditional OS tasks such as manag-
ing global resources, creating new processes, and man-
aging memory for applications. To facilitate message
passing, the IBOS kernel includes the L4Ka::Pistachio
[8] message passing implementation and MMU manage-
ment functions. All messages pass through our reference
monitor and are subjected to our overall system security
policy. Section 4 describes the policies that the IBOS
kernel enforces and the mechanisms it uses to implement
these policies.

2.2.2 Network, storage, and UI managers

The IBOS network subsystem handles HTTP requests
and socket calls for applications. To handle HTTP re-
quests, network processes check a local cache to see if
the request can be serviced via the cache, fetch any cook-
ies needed for the request, format the HTTP data into a
TCP stream, and transform that TCP stream into a series
of Ethernet frames that are sent to the NIC driver. Socket
network processes export a basic socket API and simply
transform TCP streams to Ethernet frames for transmis-
sion across the network. Only traditional apps can access
our socket network processes. The IBOS kernel manages
global states, like port allocation.

The IBOS storage manager maintains persistent stor-
age for key-value data pairs. The browser uses the stor-
age manager to store HTTP cookies and HTMLS5 local
storage objects, and the basic object store includes op-
tional parameters, such as Path and Max-Age, to ex-
pose cookie properties to the reference monitor. The
storage manager uses several different namespaces to
isolate objects from each other. Web apps and net-
work processes share a namespace based on the origin
(the <protocol, domain name, port> tuple of
a uniform resource locator) that they originate from,
and web apps and traditional apps share a “localhost”
namespace, which is separate from the HTTP names-
pace. All other drivers and managers have their own pri-

USENIX Association

9th USENIX Symposium on Operating Systems Design and Implementation (OSDI *10) 19

vate namespaces to access persistent data.

The IBOS UI manager plays the role of the window
manager for the system. However, rather than implement
the browser UI components on top of the traditional win-
dow motif, we opted for a tabbed browser motif. Basic
browser UI widgets, called the browser chrome, are dis-
played at the top of the screen. IBOS displays web pages
in tabs and the user can have any number of tabs open for
web apps. There is a tab for basic browser configuration
and administration, and a tab that is shared by traditional
apps. If traditional apps wish to implement the window
motif, they can do so within the tab. The main advan-
tage of our browser-based motif is that it enables IBOS
to bypass the extra layers of indirection traditional win-
dow managers put between applications and the under-
lying graphics hardware, exposing browser Ul elements
and events directly to the IBOS kernel. We discuss the
security implications of our design decision in more de-
tail in Section 4.8.

2.2.3 Web apps, traditional apps, and plugins

The IBOS system supports two different types of pro-
cesses: web page instances and traditional processes. A
web page instance is a process that is created for each in-
dividual web page a user visits. Each time the user clicks
on a link or types a uniform resource locator (URL) into
the address bar, the IBOS kernel creates a new web page
instance. Web page instances are responsible for issuing
HTTP requests, parsing HTML, executing JavaScript,
and rendering web content to a tab. Traditional processes
can execute arbitrary instructions, and the key difference
between a web page instance and a traditional processes
is that the IBOS kernel gives them different security la-
bels, which the kernel uses for access control decisions.
Web page instances are labeled with the origin of the
HTTP request used to initiate the new web page, and tra-
ditional processes are labeled as being from “localhost.”
These two processes interact via the storage subsystem
since both types of processes can access “localhost” data.

In general, plugins are external applications that
browsers use to render non-HTML content. One com-
mon example of a plugin is the Flash player that enables
browsers to play Flash content. In IBOS, plugins run as
traditional processes, except that they are launched by
the browser and the system gives them access to browser
states and events through a standard plugin programming
interface, called the NPAPI [2].

3 Current browser policies

In this section we give a brief introduction to the same-
origin policy (SOP) for browser security. For a more

complete discussion of this policy and others, plus exper-
imental results showing how current browsers implement
them, please see a recent paper by Singh, et al. [47].

The primary security policy that all modern browsers
implement is the SOP. The SOP acts as a non-
interference policy for the web. Loosely speaking, the
SOP provides isolation for web pages and states that
come from different origins — origins are used as labels
for browser access control policies. If the browser has a
web page open from uiuc.edu and from attacker.
com, the SOP should ensure that these two web pages are
isolated from each other. Unfortunately, Chrome, IES,
Safari, and Firefox all enforce the SOP using a number
of checks scattered throughout the millions of lines of
browser code and current browsers have had trouble im-
plementing the SOP correctly [14].

In a browser, a frame is a container that encapsulates
a HTML document and any material included in that
HTML document. Web pages are frames, and web de-
velopers can embed additional frames within web pages
— these frames are called iframes. Developers can
include i frames from the same origin as the hosting
frame, or from a different origin. Each frame is labeled
with the origin of the main HTML document used to pop-
ulate the frame, meaning that a cross-origin i f rame has
a different label than the hosting web page.

In general HTML documents include references to
network objects that the browser will download and dis-
play to form the web page. These network objects can
be images, JavaScript, and CSS. Browsers can download
these objects from any domain and the browser labels
them with the origin of the hosting frame. For exam-
ple, if a page from uiuc.edu includes a script from
foo.com, that script runs with full uiuc.edu per-
missions and can access any of the states in that web
page. Browsers can also download HTML documents
and XML HTTP requests (used for Ajax), but the SOP
dictates that these objects must come from the same ori-
gin as the hosting frame.

4 IBOS security policies and mechanisms

Our primary goal is to enforce browser security policies
from within our IBOS kernel. This section describes the
mechanisms that the IBOS kernel uses to enforce the
SOP. We also discuss policies and mechanisms for en-
forcing Ul interactions, and we describe a custom policy
engine that lets web sites further restrict current policies.

4.1 Threat model and assumptions

Our primary goal is to ensure that the IBOS kernel up-
holds our security policies even if one or more of the sub-
systems have been compromised. In our threat model,

20

9th USENIX Symposium on Operating Systems Design and Implementation (OSDI *10)

USENIX Association

(- ~
: uiuc.edu !
Web Page Instance =777
~ J
(9)1\ 1)
(@) . L
Storage [<—>| foocom & uiucedu
NIC Drivers @) Network Process
A So A
: . ®1 o
@5 @ D > Network Manager
NIC D s

Figure 2: This figure enlarges the right half of Figure 1
and shows how our IBOS subsystems interact when a
web page instance from uiuc.edu issues a network
request to foo.com. Subsystems are shown in boxes
and solid and dotted arrows represent IBOS messages for
outgoing and incoming data respectively. The reference
monitor (which is not shown here) checks all these mes-
sages to enforce security properties.

we assume that an attacker controls a web site and can
serve arbitrary data to our browser, or that the system
contains a malicious traditional app. We also assume that
this malicious data or traditional app can compromise
one or more of the components in our system. These
susceptible components include all drivers, browser API
managers, web page instances, and traditional processes.
Once the attacker takes control of these components, we
assume that he or she can execute arbitrary instructions
as a result of the attack. We focus on maintaining the in-
tegrity and confidentiality of the data in our browser. In
other words, we would like the user to be able to open a
web page on a trusted web server, and interact with this
web page securely, even if everything on the client sys-
tem outside of our TCB has been compromised. Avail-
ability is an important, but separate, aspect of browser
security that we do not address in this paper.

In our system we trust the layers upon which we built
IBOS. These layers include the IBOS kernel and the un-
derlying hardware. Like all other browsers, IBOS pred-
icates security decisions based on domain names, so we
trust domain name servers to map domain names to IP
addresses correctly. Compromising any of these trusted
layers compromises the security of IBOS.

4.2 1IBOS work flow

This section describes a web page instance making a net-
work request to help illustrate the security mechanisms
that IBOS uses.

Figure 2 shows the flow of how a web page instance
fetches data from the network. The user visits a page
hosted at uiuc.edu and this web page includes an im-
age from foo . com. To download the image, (1) the web
page instance will make an HTTP request that the IBOS
kernel forwards to an appropriate network process. The
network process forms a HTTP request, which includes
setting up HTTP headers, (2) fetching cookies from the
storage subsystem, (3) requesting a free local TCP port
to transform this request into TCP/IP packets and Ether-
net frames, and (4) sending it to network manager. The
network manager notifies the Ethernet driver which (5)
programs the NIC to transmits the packet out to the net-
work. When the NIC receives a reply for the request, (6)
it notifies the Ethernet driver. The driver subsequently
(7) notifies the network manager, which (8) forwards the
packet to the appropriate network process. The network
process then parses the data and (9) passes the resulting
HTTP reply and data to the original web page instance.

4.3 1IBOS labels

To enforce access control decisions, the IBOS kernel la-
bels web page instances, traditional processes, and net-
work processes. IBOS labels specify the resources that
a process can access or messages it can receive. Each
web page instance has one label, which is the origin of
the main HTML document. Each traditional process is
labeled as being from “localhost” when they are created.
Each network process has an origin label for the network
resources it handles and has an origin label for the web
page instances that are allowed to access it. IBOS la-
bels the processes upon creation, and keeps the labels
unchanged throughout the processes’ life-cycle.

An important point is that the IBOS kernel infers the
origin labels for web page instances and network pro-
cesses automatically by extracting related information
from the messages passed among them. By inferring la-
bels rather than relying on processes to label themselves,
the IBOS kernel ensures that it has the correct label in-
formation, even if a process is compromised.

The newUrl and fetchUrl IBOS system calls are the
two requests that cause the kernel to label processes. The
newUrl system call is used by web page instances and the
UI manager use to navigate the browser to a new URL.
The newUrl system call consists of two arguments: a
URL and a byte array for HTTP POST data. When the
IBOS kernel receives a newUrl request it will create a
new web page instance and set the label for this web page
instance by parsing the origin out of the URL argument
of the newUrl request. When servicing newUrl requests,
the IBOS kernel will reuse old web page instances (to
reduce process startup times), but only when the origin
labels match for the old web page instance and the URL

USENIX Association

9th USENIX Symposium on Operating Systems Design and Implementation (OSDI *10) 21

argument.

Web page instances use the fetchUrl system call to is-
sue HTTP and HTTPS requests to fetch network objects,
such as images. The fetchUrl system call has two ar-
guments: a URL and HTTP header information. When
a web page instance issues a fetchUrl system call, the
IBOS kernel uses the origin of the web page instance
(set by the original newUrl call) and the origin of the
fetchUrl URL argument to find a network process with
these same labels, or creates a new network processes
and labels it accordingly if an existing network process
cannot be found.

More details about how we use these labels for access
control decisions are described in the remainder of this
section.

4.4 Security invariants

For all of our subsystems, we use security invariants that
are assertions on all interactions between subsystems that
check basic security properties. The key to our security
invariants is that we can extract security relevant infor-
mation from messages automatically, and provide high
assurance that the system maintains the security policy
without having to understand how each individual sub-
system is implemented. Using these security invariants,
we remove from the TCB almost all of the components
found in modern commodity operating systems, includ-
ing device drivers.

The ideal security invariant is complete, implementa-
tion agnostic, executes quickly, and requires only a small
amount of code in the IBOS kernel. A complete invariant
can infer all of the states needed to ensure the high-level
security policy, and an implementation agnostic invari-
ant can infer states without relying on the specific imple-
mentation of individual subsystems. The IBOS kernel
evaluates invariants in the kernel and inline with mes-
sages, so security invariants should execute quickly and
require little code to implement. In our design we strive
to make the appropriate trade offs among these proper-
ties to improve security without making the system slow
or increasing our TCB significantly. The base security
invariant we have is:

SI 0: All components can only perform their designated
functions.

For example, the UI subsystem can never ask for
cookie data or the storage manager cannot impersonate
a network process to send synthesized attack HTTP data
to a web page instance.

4.5 Driver invariants

The two driver invariants the IBOS kernel enforces are:

SI 1: Drivers cannot access DMA buffers directly.
SI2: Devices can only access validated DMA buffers.

In our approach, we use a split driver architecture
where we separate the management of device control reg-
isters from the use of device buffers (SI 1). For example,
our Ethernet driver never has access to transmit or re-
ceive buffers directly. Instead, it knows the physical ad-
dresses where the IBOS kernel stores these buffers, and
it programs the NIC to use them. By separating these
two functions we can interpose on the communications
between them to ensure that IBOS upholds browser secu-
rity policies, even if an attacker completely compromises
a shared driver.

Using this split architecture, processes fill in device-
specific buffers for DMA transfers, and the IBOS ker-
nel infers when drivers initiate DMA transfers to ensure
that the driver instructs the device to use a verified DMA
buffer (SI 2). Fortunately, DMA buffers tend to use
well-defined interfaces, like Ethernet frames for Ether-
net drivers, so the IBOS kernel can readily glean security
relevant information from these DMA buffers before the
device accesses them. Unfortunately, the interface be-
tween drivers and devices is device-specific, so the IBOS
kernel must have a small state machine for each device
to properly infer DMA transfers. However, we found this
state machine to be quite small for the devices that we use
in IBOS.

In IBOS we implement a driver for the e1000 NIC, a
VESA BIOS Extensions driver for our video card, and
drivers for the mouse and keyboard.

4.6 Storage invariants

The primary invariant we strive to enforce in the storage
manager is:

SI 3: All of our key-value pairs maintain confidentiality
and integrity even if the storage stack itself becomes
compromised.

To enforce this invariant, our IBOS kernel encrypts
all objects before passing them to the storage subsystem.
To encrypt data, the IBOS kernel maintains separate en-
cryption keys for all of the namespaces on the IBOS sys-
tem. These namespaces include separate namespaces for
HTTP cookies based on the domain of the cookie, sep-
arate namespaces for web page instances based on the
origin of the page, separate namespaces for each of our
subsystems, and a separate namespace for all traditional
apps. When the IBOS kernel passes a request to the stor-
age manager it will append the security labels, a copy
of the key from the key-value pair, and a hash of the
contents to the payload before encrypting the data and

22

9th USENIX Symposium on Operating Systems Design and Implementation (OSDI *10)

USENIX Association

passing it to the storage subsystem. When the IBOS ker-
nel retrieves this data, it can decrypt the data and check
the labels and integrity of the information. By using en-
cryption, the IBOS kernel does not need to implement
security invariants for any of our storage drivers, and our
storage subsystem is free to make data persistent using
any mechanisms it sees fit, such as the network (like in
our implementation) or via a disk-based storage system.

Our current implementation does not make any efforts
to avoid an attacker that deletes objects or replays old
storage data. For web applications this limitation has
only a small effect because the cookie standards do not
require browsers to keep cookies persistently and be-
cause web applications often limit the lifetime of cookies
using expiration dates, which are also part of the cookie
standard. However, if this limitation did become prob-
lematic, we could apply the principles learned from dis-
tributed or secure file systems to provide stronger guar-
antees.

4.7 Network process invariants

Our IBOS kernel maintains five main invariants for net-
work processes:

SI 4: The kernel must route network requests from web
page instances to the proper network process.

SIS: The kernel must route Ethernet frames from the
NIC to the proper network processes.

SI 6: Ethernet frames from network processes to the
NIC must have an IP address and TCP port that
matches the origin of the network process.

SI7: HTTP data from network processes to web page
instances must adhere to the SOP.

SI 8: Network processes for different web page in-
stances must remain isolated.

To help enforce these invariants, IBOS puts all net-
work processes in their own protection domains. If a web
page instance makes a HTTP request, the kernel will ex-
tract the origin from the request message and either route
this request to an existing network process that has the
same label, or it will create a new network process and
label the network process with the origin of the HTTP
request. Likewise, the kernel inspects incoming Ether-
net frames to extract the origin and TCP port informa-
tion, and routes these frames to the appropriately labeled
network process. By putting network processes in their
own protection domains, the kernel naturally ensures that
network requests from web page instances and Ethernet
frames from the NIC are routed to the correct network
process (SI 4) (SI5).

To ensure that the NIC sends outgoing Ethernet frames
to the correct host, the IBOS kernel checks all outgoing
Ethernet frames before sending them to the NIC to check

the IP address and TCP port against the label of the send-
ing network process (SI 6). Also, the IBOS kernel checks
cookies before passing them to the network process to
ensure that all of the origin labels adhere to cookie stan-
dards. By performing these checks, the IBOS kernel en-
sures that the NIC sends outgoing network requests to
the proper host and that the request can only include data
that would be available to the server anyway.

To enforce the SOP, the IBOS kernel inspects HTTP
data before forwarding it to the appropriate web page
instance and drops any HTML documents from differ-
ent origins (SI 7). To inspect data, the kernel uses the
content sniffing algorithm from Chrome [10] to identify
HTML documents so the kernel can check to make sure
that the origin of HTML documents and the origin of the
web page instance match. This countermeasure prevents
compromised web page instances from peering into the
contents of a cross-origin HTML document, thus pre-
venting the compromised web page instance from read-
ing sensitive information included in the HTML docu-
ment.

To help isolate web page instances from each other,
we also label network processes with the origin of the
web page instance (SI 8). This second label is used only
for network access control decisions and does not affect
the cookie policy, which is predicated on the origin of
the network request. To access network processes, the
origin of the web page instance must match the origin of
this second label. By using this second label, the IBOS
kernel isolates network requests from different web page
instances to the same origin. As a result of this isolation,
a web page instance that is served a malicious network
resource (e.g., a malicious ad [41]) that compromises a
network process remains isolated from other web page
instances. If an attacker can compromise a network pro-
cess, IBOS limits the damage to the web page instance
that included the malicious content.

4.8 Ul invariants

The three Ul invariants that the IBOS kernel enforces are:

S19: The browser chrome and web page content dis-
plays are isolated.

SI10: Only the current tab can access the screen,
mouse, and keyboard.

SI11: The URL of the current tab is displayed to the
user.

The key mechanisms that our Ul subsystem uses to
provide isolation are to use a frame buffer video driver
and page protections to isolate portions of the screen (SI
9). Our video driver uses a section of memory, called
a frame buffer, for writing to the screen. Processes

USENIX Association

9th USENIX Symposium on Operating Systems Design and Implementation (OSDI *10) 23

R,

Web Page
Instances

OPEN CIRRUS: ©
A GLOBAL CLOUD <
COMPUTING

AN TESTBED

FoLLOW US!

Web Page
Instance

Page Pl
Protection [-

Figure 3: IBOS display isolation. This figure shows how
IBOS divides the display into three main parts: a bar at
the top for the kernel, a bar for browser chrome, and the
rest for displaying web page content. The IBOS kernel
enforces this isolation using page protections and without
relying on a window manager.

write pixel values to this frame buffer and the graph-
ics card displays these pixels. Although our mechanism
makes heavy use of the software rastering available in Qt
Framework[3], our experiences and anecdotal evidence
from the Qt developers shows that software rastering can
perform roughly as fast as native X drivers running on
Linux [7]. The key advantage of our approach is that
the IBOS kernel can use standard page-protection mech-
anisms to isolate portions of the screen. Although our
current implementation does not support hardware accel-
eration, we believe that our techniques will work because
the IBOS kernel can interpose on standardized accelera-
tion hardware/software interfaces, such as OpenGL and
DirectX.

To provide screen isolation, we divide up the screen
into three horizontal portions (Figure 3). At the top, we
reserve a small bar that only the IBOS kernel can access.
We use the next section of the screen for the Ul subsys-
tem to draw the browser chrome. Finally, we provide
the remainder of the screen to the web page instance. To
ensure that only one web page instance can write to the
screen at any given time, we only map the frame buffer
memory region into the currently active web page in-
stance and we only route mouse and keyboard events to
this currently active web page instance (SI 10).

To switch tabs, the UI subsystem notifies the IBOS
kernel about which tab is the current tab, and the IBOS
kernel updates the frame buffer page table entries ap-
propriately. However, a malicious UI manager could
switch tabs arbitrarily and cause the address bar and the
tab content to become out of sync (e.g., shows a page
from attacker. com, but claims the page comes from
uiuc.edu). One alternative we considered for this UI

inconsistency was interposing on mouse and keyboard
clicks to infer which tab the user clicked on, and also
performing optical character recognition on the address
bar to determine the address that the Ul manager is dis-
playing. However, tracking this level of detail would re-
quire far too much implementation specific information
and would require the IBOS kernel to track additional
events like a user switching the order of tabs.

Our approach for the IBOS kernel is to use the kernel
display area to display the URL for the currently visi-
ble web page instance (SI 11). The kernel derives the
URL from the label of the currently visible web page
instance, providing high assurance that the URL the ker-
nel displays matches the URL of the visible web page
instance without tracking implementation specific states
and events in the Ul manager. Although this security in-
variant appears simple, it is something that modern web
browsers have had trouble getting right [13].

4.9 Web page instances and iframes

The IBOS kernel creates a new web page instance each
time a user clicks on a link or types a new URL in the
address bar. To enforce the SOP on iframes, we run
cross-origin i frames in separate web page instances.
This separation allows us to fully track the SOP using
kernel visible entities. To facilitate communication be-
tween web page instances and the iframes that they
host, we marshal postMessage calls between the two.

Our current display isolation primitives are coarse
grained and we rely on the web page instance to manage
cross-origin iframe displays even though iframes
run in separate protection domains. However, current
display policies allow web page instances to draw over
cross-origin i f rames that they host, so this design deci-
sion has no impact on current browser policies. One po-
tential shortcoming of this display management approach
is that compromised web page instances can read the dis-
play data for embedded iframes. Fortunately, many
sites with sensitive information, like facebook.com
and gmail.com, use frame busting techniques [34] to
prevent cross-origin sites from embedding them, which
the IBOS kernel can enforce.

4.10 Custom policies

Our main focus of this project is being able to enforce
current browser policies from the lowest layer of soft-
ware. However, we also want to create an architecture
that exposes enough browser states and events to en-
able novel browser security policies. Attacks such as
XSS operate within traditional browser policies and can
be difficult to prevent without relying on the HTML or
JavaScript engine implementations. Although our archi-

24

9th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’10)

USENIX Association

tecture cannot prevent XSS, our goal is to prevent these
types of attacks from causing damage.

One mechanism we implement in IBOS is to give
a web server the ability to create its own more re-
strictive security policy to prevent attacks from sending
sensitive information to third-party hosts. In our cus-
tom policy, we allow web sites to specify a server-side
policy file that IBOS retrieves to restrict network ac-
cesses for a web page instance, similar to Tahoma man-
ifests [15]. For example, assume that a bank website
located at http://www.bank.com creates a policy
fileathttp://www.bank.com/.policy thatspec-
ifies the online bank system can only access resources
from www.bank.comor data.bank.com. IBOS re-
trieves the policy file and automatically applies a more
restrictive policy for the online bank web application.
This restrictive policy prevents an attacker from sending
stolen information to a third-party host, providing an ad-
ditional layer of protection for the web application.

5 Implementation

The implementation of IBOS is divided into three parts:
the IBOS kernel, IBOS messaging passing interfaces,
and IBOS subsystems. The IBOS kernel is implemented
on top of the L4Ka::Pistachio microkernel and runs on
X86-64 uniprocessor and SMP platforms. We modi-
fied L4Ka to improve its support for SMP systems. The
IBOS kernel schedules processes based on a static prior-
ity scheduling algorithm.

The IBOS kernel provides three basic APIs (i.e.,
send (), recv (), and poll ()) to facilitate message
passing. Applications use send () and recv () for
communication and call pol1 () to wait for new mes-
sages. The IBOS kernel intercepts all messages and au-
tomatically extracts the semantics from them, like cre-
ating a new web page instance or forwarding cookies to
network processes. Then the kernel inspects the seman-
tics to make sure they conform to all security invariants
and policies that we described in previous sections.

The IBOS subsystems implements APIs for web
browsers and traditional applications. They are built on
top of an IBOS-specific uClibc [6] C library, IwIP [17]
TCP/IP stack and the Qt Framework [3]. The web
browser also uses an IBOS-specific WebKit [5] to parse
and render web pages.

To support traditional apps, we use our uClibc and Qt
implementations to provide access to browser abstrac-
tions using the UNIX-like abstractions of the C runtime,
and GUI support from Qt. We use a few Qt sample pro-
grams for testing and we implement one plugin. Our plu-
gin is a PDF viewer that uses the Ghostscript PDF ren-
dering engine with bindings for Qt.

System LOC
IBOS 42,044
IBOS Kernel 8,905
L4Ka::Pistachio 33,139
Firefox on Linux > 5,684,639
Firefox 3.5 2,171,267
GTK+ 2.18 489,502
glibc 2.11 740,314
X.Org 7.5 653,276
Linux kernel 2.6.31 1,630,280
ChromeOS > 4,407,066
Chrome browser kernel 4.1.249 714,348
GTK+ 2.18 489,502
glibc 2.11 740,314
ChromeOS kernel & services (May 2010) 2,462,902

Table 1: Estimation of LOC of TCBs for IBOS, Firefox
on Linux, and ChromeOS. LOC counts are also shown
for some major components that are included in the TCB.

6 Evaluation

This section describes our evaluation of IBOS. In our
evaluation, we analyze the security of IBOS by measur-
ing the number of lines of code (LOC) in the IBOS TCB
and comparing it with other systems, and by looking at
recent bugs in comparable systems and counting vulner-
abilities that IBOS is susceptible to. We also revisit the
example attacks we discussed in the introduction, and we
measure the performance.

6.1 TCB

In IBOS, our goal is to minimize the TCB for web
browsers and to simplify browser-based systems. To
quantitatively evaluate our effort, we count the LOC in
the IBOS TCB and compare it against the TCB for Fire-
fox and ChromeOS. IBOS supports fewer hardware ar-
chitectures, platforms, device drivers and features, such
as browser extensions, than Firefox running on Linux
and ChromeOS. For a fair comparison, we only count
source code that is used for running above Linux and on
the X86-64 platform. Also, we omit all device drivers
from our counts except for the drivers we implement in
IBOS.

Table 1 shows the result of LOC counts in the TCB for
these three systems, measured by SLOCCount [54]. For
Firefox and ChromeQOS, our counts are conservative be-
cause we only count the major components that make up
the TCB for each system — there are likely more compo-
nent that are also in the TCB for these systems. Because
the IBOS TCB has only around 42K LOC, it is possible
to formally verify or manually review the entire IBOS
TCB. And in fact, one L4 type microkernel has already

USENIX Association

9th USENIX Symposium on Operating Systems Design and Implementation (OSDI *10) 25

Affected Component || Num. | Prevented
Linux kernel overall 21 20 (95%)
File system 12 12 (100%)
Network stack 5 5(100%)
Other 4 3(75%)
X Server 2 2 (100%)
GTK+ & glibc 5 5 (100%)
Overall 28 27 (96 %)

Table 2: OS and library vulnerabilities. This table shows
the number of vulnerabilities that IBOS prevents.

been formally verified [32].

6.2 OS and library vulnerabilities

To evaluate the security impact of IBOS’s reduced TCB,
we obtained a list of 74 vulnerabilities found in the Linux
kernel, X Server, GTK+, and glibc this year so far (as
of Sep. 18, 2010) [1] to see how the IBOS architecture
handles them. Out of the 74 vulnerabilities, 20 are re-
lated to unsupported hardware architectures and devices,
and 26 cause denial-of-service, which is out-of-scope for
this paper. For the remaining 28, we classify them based
on the subsystem the vulnerability lies in to determine if
IBOS is susceptible to these vulnerabilities.

Table 2 shows IBOS is able to prevent 27 of 28 vul-
nerabilities (96%). The only vulnerability we miss is
a memory corruption vulnerability in the e1000 Ether-
net driver. Normally IBOS is not susceptible to bugs in
device drivers, but this particular bug resulted from the
driver not accounting properly for Ethernet frames larger
than 1500 bytes, and this type of logic is what our NIC
verification state machine uses, so we counted this bug
against IBOS.

6.3 Browser vulnerabilities

To evaluate security improvements that IBOS makes
for browsers themselves, we compared how well
IBOS could contain or prevent vulnerabilities found in
Google’s Chrome browser. For this evaluation, we ob-
tained a list of 295 publicly visible bugs with the “se-
curity” label in Chrome’s bug tracker. Out of the 295
bugs, 42 cause denial-of-service such as a simple crash or
100% CPU utilization. IBOS does not address denial-of-
service or resource management currently. An additional
78 are either invalid, duplicate, not actually security is-
sues, or related to features that IBOS does not have, such
as browser extensions. For the remaining 175 bugs, we
examined each of them to the best of our knowledge and
classified them into the following seven categories and
compared how Chrome and IBOS handle those cases:

Memory exploitation: an attacker could use a memory
corruption bug to deploy a remote code execution attack.
For Chrome, if the bug is in its rendering engine, Chrome
contains the attack. However, bugs in the browser kernel
give attackers access to the entire browser. For IBOS,
bugs in either the rendering engine or other service com-
ponents are contained as they are all out of the TCB.

XSS: browsers rely on careful sanitization and correct
processing of different encodings to prevent XSS attacks.
For both Chrome and IBOS, it is infeasible to eliminate
XSS attacks, but they both contain the attacks in the af-
fected web apps.

SOP circumvention: Chrome runs contents in frames
from different origins in a single address space and uses
scattered “if” and “else” statements to enforce the same-
origin policy. This logic can be sometime subverted. In
IBOS, we run iframes in different web page instances to
provide strong isolation and check cross-origin access in
the IBOS kernel.

Sandbox bypassing: Chrome uses sandboxing tech-
niques, such as SELinux, to limit the rendering engine’s
authority. However, rule-based sandboxing is complex
and can be bypassed in some scenarios. In IBOS, we
designed browser abstractions to restrict the authority of
each subsystem, which are immune to this kind of prob-
lem naturally.

Interface spoofing: browsers are sometime vulnerable
to visual attacks in which a malicious website can use
complex HTTP redirection or even replicate the “look
and feel” of victim websites to deploy phishing. Chrome
uses a blacklist-based filter to warn users of malicious
websites. In IBOS, the IBOS kernel separates the dis-
play of different web page instances and uses the labels
of web page instances to display the correct URL in the
top of the screen to give the user a visual cue of which
website he or she is visiting.

Ul design flaw: some security concerns arise because
of careless implementation, such as showing users’ pass-
words in plain text. Both Chrome and IBOS are vulnera-
ble to this type of problem.

Misc: some vulnerabilities could not easily be classi-
fied and mostly have low security severity. This is the
category for those remaining bugs.

In Table 3, we show the detailed results of the analysis
of the 175 vulnerabilities, broken down by the classifi-
cations above. We examined each of them to determine
whether Chrome contains the threats in the affected com-
ponents, and whether IBOS contains or eliminates the at-
tacks. The table shows IBOS successfully protects users
from 135 of the 175 vulnerabilities (77%).

The largest portion of bugs are browser implementa-
tion flaws that cause memory corruption and allow re-
mote code execution. Chrome does a fairly good job
containing most of them when they are in the rendering

26

9th USENIX Symposium on Operating Systems Design and Implementation (OSDI *10)

USENIX Association

Chrome IBOS

Category Example Num. | Contained | Contained or eliminated
Memory exploitation A bug in layout engine leads to remote code execution 82 71 (86%) 79 (96%)

XSS XSS issue due to the lack of support for ISO-2022-KR 14 12 (87%) 14 (100%)

SOP circumvention XMLHttpRequest allows loading from another origin 21 0 (0%) 21 (100%)
Sandbox bypassing Sandbox bypassing due to directory traversal 12 0 (0%) 12 (100%)
Interface spoofing Two pages merge together in certain situation 6 0 (0%) 6 (100%)

UI design flaw Plain-text information leak due to autosuggest 17 0(0%) 0(0%)

Misc Geolocation events fire after document deletion 22 0(0%) 3 (14%)

Overall 175 83 (46%) 135 (77%)

Table 3: Browser vulnerabilities. This table shows the number of Chrome vulnerabilities that Chrome itself contains

and IBOS contains or eliminates.

engine. However, Chrome is unable to contain exploits
in the browser kernel. A good example is a bug in the
HTTP chunked encoding module in the browser kernel,
which opens the possibility for a remote attacker to inject
code. In IBOS, the TCP/IP and HTTP stack is pushed out
of the TCB, and is replicated and isolated according to
browser security policies. Thus, IBOS is able to contain
this bug. The three memory corruption bugs IBOS could
not contain were from bugs in Chrome’s message pass-
ing system. Because the IBOS message passing logic
resides within our TCB, we counted these bugs as bugs
that IBOS would have missed.

6.4 Motivation revisited

In the introduction, we listed some examples of attacks
that an attacker can use to still cause damage to modern
secure web browsers by exploiting code in their TCB.
We revisit these examples again to argue that IBOS can
prevent them.

A compromised Ethernet driver cannot access the
DMA buffers used by the device. Even if an attacker
exploits the Ethernet driver, he or she still cannot tamper
with network packets because the driver does not have
access to DMA buffers and because the IBOS kernel val-
idates all transmit and receive buffers that the driver sets.

A compromised storage module has little impact on
data confidentiality and integrity. The IBOS kernel en-
crypts all data with secret keys that only the IBOS ker-
nel has access to. Stored objects are tagged with a hash
and origin information so that the IBOS kernel is able
to detect tampered data. The only thing a compromised
storage module can do is delete objects.

A compromised network stack is constrained as well.
In IBOS, every network process runs a complete net-
work stack. A compromised network process cannot
send users’ data to a third party host as the IBOS ker-
nel ensures it can only communicate with the expected
host. Network processes do have the ability to modify or
replay HTTP requests, but the web server might have a

mechanism to defend against replay attacks.

A Compromised window manager cannot affect other
subsystems in IBOS. In IBOS, the role of window man-
ager is simplified to only draw the browser chrome. It
can change some potentially sensitive information, such
web page titles. However, the IBOS kernel displays the
URL of the current tab in the kernel display area, provid-
ing users with some visual cues as to the provenance of
the displayed web content.

6.5 Performance

To evaluate the performance implication of IBOS’s ar-
chitecture, we compare its browsing experience to other
web browsers running in Linux. All experiments were
carried out on a 2.33GHz Intel Core 2 Quad CPU
Q8200 with 4GB of memory, a 320GB 7200RPM Sea-
gate ST3320613 SATA hard drive and an Intel PRO/1000
NIC connected to 1000 Mbps Ethernet. For Linux, we
used Ubuntu 9.10 with kernel version 2.6.31-16-generic
(x86-64).

We use page load latency to represent browsing ex-
perience. Page load latency is defined as the elapsed
time between initial URL request and the DOM onload
event. We compare IBOS with Firefox 3.5.9, Chrome
for Linux 4.1.249. We also ported most of the IBOS
browser components to Linux platform (noted as IBOS-
Linux) to focus on the performance impact of our IBOS
kernel architecture. In IBOS, we statically allocate pro-
cessors for subsystems as follows: the kernel and device
drivers run on CPUO, network processes run on CPU1,
web page instances run on CPU2, and all other compo-
nents run on CPU3. IBOS, IBOS-Linux, and Chrome all
use a same version of WebKit from February 2010 with
just-in-time JavaScript compilation and HTTP pipelining
enabled. For the WebKit-based browsers, we instrument
them to measure the time in between the initial URL re-
quest and the DOM onload event. For Firefox, we use
an extension that measures these same events. To reduce
noise introduced by our network connection, we load

USENIX Association

9th USENIX Symposium on Operating Systems Design and Implementation (OSDI *10) 27

3,000 [~ T |8 mos]
e IBOS-Linux
Firefox
2,500 L | Chrome [
o
2,000
=,
1,500 %

1,000

< P 18

500 S - 1§ S
0 Eig%

Google Maps Bing Craigslist CS@Illinois Wikipedia Facebook

Figure 4: Page load latencies for IBOS and other web
browsers. All latencies are shown in milliseconds.

each web site using a fresh web page/browser instance
with an empty cache 15 times and report the average of
the five shortest page load latency times.

In Figure 4, we present the page load latency times
for six popular websites and show the standard devia-
tions with the error bars. Overall, Chrome has the short-
est page load latencies due to its effective optimization
techniques. For maps.google.com, IBOS, IBOS-
Linux, and Chrome out-perform Firefox, possibly due
to optimization in the WebKit engine for this particular
site. For www.bing.com, sfbay.craigslist.
org and cs.illinois.edu, IBOS, IBOS-Linux,
and Firefox show roughly the same results. IBOS has the
fastest loading time for craigslist. Craigslist
is a simple web site with few HTTP requests and with a
large number of HTML elements. We hypothesize that
the small performance improvement is due to the simpli-
fied IBOS software stack.

Both en.wikipedia.org/wiki/Main_Page
and www . facebook.com have more HTTP requests
than any of the other sites, and we observe slower page
load latencies for IBOS than for other browsers. For
these experiments IBOS performs slower than IBOS-
Linux. Because we use the IBOS components in Linux,
we believe that this performance difference occurs from
overhead in the IBOS kernel. To test this hypothesis, we
ran a number of micro benchmarks on the two systems
and we believe that the overhead is due to contention for
spinlocks in the L4 IPC implementation. The net effect
of this contention is that heavy use of network processes
requires heavy use of IPC, which adds latency to all IPC
messages and slows down the overall system. However,
the IBOS-Linux results for these experiments show that
this slow down is not fundamental and can be fixed with
a more mature kernel implementation.

Overall, the page load latency experiments show that
even with a prototype implementation of IBOS, our ar-

chitecture will not slow down the browsing speed signif-
icantly for the web sites we tested.

7 Additional related work

7.1 Alternative kernel architectures

Operating systems designed to reduce the trusted com-
puting base for applications are not new. For example,
several recent OSes propose using information flow to
allow applications to specify information flow policies
that are enforced by a thin kernel [18, 57, 33]; KeyKOS
[12], EROS [45], and seL4 [32] provide capability sup-
port using a small kernel; and Microkernels [24, 27, 28]
push typical OS components into user space. In IBOS,
we apply these principles to a new application — the web
browser — and include support for user interface com-
ponents and window manager operations. Also, these
previous approaches support general purpose security
mechanisms, like information flow and capabilities, and
shared resources and device drivers are part of the TCB.
The IBOS security policy is specific to web browsers,
and although this is less general, we can track this pol-
icy to hardware abstractions and can remove drivers and
other shared components from our TCB.

Both Exokernels [19, 31] and L4 [27] rethink low-
layer software abstractions. In both projects, they ad-
vocate exposing abstractions that are close to the under-
lying hardware to enable applications to customize for
improved performance. In IBOS we build on these pre-
vious works — in fact we use the L4Ka::Pistachio L4 [8]
MMU abstractions and message passing implementation
directly. However, the key difference between our work
and L4 and Exokernel is that we expose high-level ap-
plication abstractions at our lowest layer of software, not
low-level hardware abstractions. Our focus is on making
web browsers more secure and the system software we
use to accomplish this improved security.

7.2 Browser security

A number of recent papers have proposed new browser
architectures including SubOS [29, 30], safe web pro-
grams [44], OP [26], Chrome [11, 43], Gazelle [52], and
ServiceOS [38]. Although the browser portion of IBOS
does resemble some of these works, they all run on top of
commodity OSes and include complex libraries and win-
dow managers in their TCB, something that IBOS avoids
by focusing on the OS architecture of our system.

The webOS from Palm [40] and the upcoming
ChromeOS from Google [25] run a web browser on top
of a Linux kernel. ChromeOS includes kernel harden-
ing using trusted boot, mandatory access controls, and
sandboxing mechanisms for reducing the attack surface

28

9th USENIX Symposium on Operating Systems Design and Implementation (OSDI *10)

USENIX Association

of their system. However, ChromeOS and IBOS have
fundamentally different design philosophies. ChromeOS
starts with a large and complex system and tries to re-
move and restrict the unused and unneeded portions of
the system. In contrast, IBOS starts with a clean slate
and only adds to our system functionality needed for
our browser. Although our approach does require im-
plementing from scratch low-level software and fitting
device drivers to a new driver model, the end result has 2
to 3 orders of magnitude fewer lines of code in the TCB,
while still retaining nearly all of the same functionality.

In the Tahoma browser [15], the authors propose using
virtual machine monitors (VMMs) to enable web appli-
cations to specify code that runs on the client. Tahoma
uses server-side manifests to specify the security pol-
icy for the downloaded code and the VMM enforces
this security policy. Tahoma does expose a few browser
abstractions from their VMM to help manage UI ele-
ments and network connections, but operates mostly on
hardware-level abstractions. Because Tahoma operates
on hardware-level abstractions, Tahoma is unable to pro-
vide full backwards-compatible web semantics from the
VMM and more fine-grained protection for browsers,
such as isolating i frames embedded in a web applica-
tion. Also, many modern VMMs use a full-blown com-
modity OS in a privileged virtual machine or host OS for
driver support, leaving tens of millions of lines of code
in the TCB potentially.

7.3 Device driver security

Device driver security has focused on three main topics.
First, several projects focus on restricting driver access to
I/O ports and device access to main memory via DMA.
For example, RVM uses a software-only approach to re-
strict DMA access of devices [55], SVA prevents the OS
from accessing driver registers via memory mapped /O
through memory safety checks [16], and Mungi [35] re-
lies on using a hardware IOMMU to limit which mem-
ory regions are accessible from devices. Second, sys-
tem designers isolate drivers from the rest of the system.
This isolation can be achieved by running drivers in user-
mode, which has been a staple of Microkernel systems
[24, 36, 28], using software to protect the OS from ker-
nel drivers [20, 58], or by using page table protections
within the OS [49, 48]. The driver security architec-
ture in IBOS differs from these approaches because our
system provides fine-grained protection for individual re-
quests within a shared driver in addition to isolating the
driver from the rest of the system.

7.4 Secure window managers

A number of recent projects have looked at reducing the
TCB for window managers. For example DoPE [21] and
Nitpicker [22] move widget rendering from the server
to the client, leaving the server to only manage shared
buffers. CMW [56], EWS [46], and TrustGraph [39] also
use clients for rendering, but are able to apply capabili-
ties and mandatory access control policies to application
user-interface elements. In IBOS, we deprecate the gen-
eral window notion of modern computer systems in favor
of the simpler browser chrome and tab motif, allowing
us to track our security policies down to the underlying
graphics hardware on our system.

8 Conclusions

In this paper, we presented IBOS, an operating system
and web browser co-designed to reduce drastically the
trusted computing base for web browsers and to sim-
plify browsing systems. To achieve this improvement,
we built IBOS with browser abstractions as first-class OS
abstractions and removed traditional shared system com-
ponents and services from its TCB. With our new archi-
tecture, we showed that IBOS enforced traditional and
novel security policies, and we argued that the overall
system security and usability could withstand successful
attacks on device drivers, browser components, or tradi-
tional applications. Our experimental results showed that
IBOS added little overhead when compared to today’s
high-performance browsers running on fast and mature
commodity operating systems.

Acknowledgment

‘We would like to thank Brad Chen, Steve Gribble, and
Hank Levy for their feedback on our security analy-
sis. We would also like to thank our shepherd Nickolai
Zeldovich, Anthony Cozzie, and Matt Hicks who pro-
vided valuable feedback on this paper. This research
was funded in part by NSF grants CNS 0834738 and
CNS 0831212, grant N0014-09-1-0743 from the Office
of Naval Research, AFOSR MURI grant FA9550-09-01-
0539, and by a grant from the Internet Services Research
Center (ISRC) of Microsoft Research.

References
[1] CVE - Common Vulnerabilities and Exposures (CVE). http:
//cve.mitre.org.

[2] Gecko plugin API reference. https://developer.
mozilla.org/en/Gecko_Plugin_API_Reference.

[3] Qt - A Cross-platform application and UIL

nokia.com/.

http://qt.

USENIX Association

9th USENIX Symposium on Operating Systems Design and Implementation (OSDI *10) 29

(4]

(5]
(6]
(7]

(8]

(91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

Symantec internet security threat report april 2010.
http://www.symantec.com/business/theme.

jsp?themeid=threatreport.
The WebKit Open Source Project. http://webkit.org/.
uClibc. http://www.uclibc.org/.

Qt labs blogs: So long and thanks for the blit, 2008.
http://labs.trolltech.com/blogs/2008/10/
22/so-long-and-thanks-for-the-blit/.

L4Ka::Pistachio microkernel, 2010.
projects/pistachio.

http://1l4ka.org/

ANDERSON, J. P. Computer security technology planning study.
Tech. rep., HQ Electronic Systems Division (AFSC), October
1972. ESD-TR-73-51.

BARTH, A., CABALLERO, J., AND SONG, D. Secure content
sniffing for web browsers or how to stop papers from reviewing
themselves. In Proceedings of the IEEE Symposium on Security
and Privacy (May 2009).

BARTH, A., JACKSON, C., REis, C., AND THE
GOOGLE CHROME TEAM. The security archi-
tecture of the chromium browser, 2008. http:

//crypto.stanford.edu/websec/chromium/
chromium-security-architecture.pdf.

BOMBERGER, A. C., FRANTZ, W. S., HARDY, A. C., HARDY,
N., LANDAU, C. R., AND SHAPIRO, J. S. The KeyKOS nanok-
ernel architecture. In Proceedings of the Workshop on Micro-
kernels and Other Kernel Architectures (Berkeley, CA, USA,
1992), USENIX Association, pp. 95-112.

CHEN, S., MESEGUER, J., SASSE, R., WANG, H. J., AND
WANG, Y.-M. A systematic approach to uncover security flaws
in GUI logic. In Proceedings of the 2007 IEEE Symposium on
Security and Privacy (May 2007), pp. 71-85.

CHEN, S., Ross, D., AND WANG, Y.-M. An analysis of
browser domain-isolation bugs and a light-weight transparent de-
fense mechanism. In Proceedings of the 14th ACM Conference on
Computer and Communications Security (CCS) (2007), pp. 2-11.

Cox, R. S., HANSEN, J. G., GRIBBLE, S. D., AND LEVY,
H. M. A safety-oriented platform for web applications. In Pro-
ceedings of the 2006 IEEE Symposium on Security and Privacy
(May 2006), pp. 350-364.

CRISWELL, J., GEOFFRAY, N., AND ADVE, V. Memory safety
for low-level software/hardware interactions. In Proceedings of
the Eighteenth Usenix Security Symposium (August 2009).

DUNKELS, A., WOESTENBERG, L., MANSLEY,
AND MONOSES, . IwIP embedded TCP/IP
http://savannah.nongnu.org/projects/lwip/, 2004.

K.,
stack.

EFSTATHOPOULOS, P., KROHN, M., VANDEBOGART, S.,
FREY, C., ZIEGLER, D., KOHLER, E., MAZIERES, D.,
KAASHOEK, F., AND MORRIS, R. Labels and event processes
in the asbestos operating system. In SOSP '05: Proceedings of
the Twentieth ACM Symposium on Operating Systems Principles
(New York, NY, USA, 2005), ACM, pp. 17-30.

ENGLER, D. R., KAASHOEK, M. F., AND JR., J. O. Exok-
ernel: an operating system architecture for application-level re-
source management. In Proceedings of the 1995 Symposium on
Operating Systems Principles (December 1995), pp. 251-266.

ERLINGSSON, U., ABADI, M., VRABLE, M., BUDIU, M., AND
NECULA, G. C. Xfi: software guards for system address spaces.
In OSDI ’06: Proceedings of the 7th symposium on Operating
systems design and implementation (Berkeley, CA, USA, 2006),
USENIX Association, pp. 75-88.

(21]

[22]

(23]

(24]

[25]

(26]

[27]

[28]

[29]

[30]

[31]

(32]

[33]

[34]

[35]

[36]

FESKE, N., AND HARTIG, H. DOpE - a window server for real-
time and embedded systems. In RTSS ’03: Proceedings of the
24th IEEE International Real-Time Systems Symposium (Wash-
ington, DC, USA, 2003), IEEE Computer Society, p. 74.

FESKE, N., AND HELMUTH, C. A Nitpicker’s guide to a
minimal-complexity secure GUIL. In ACSAC ’05: Proceedings
of the 21st Annual Computer Security Applications Conference
(Washington, DC, USA, 2005), IEEE Computer Society, pp. 85—
94.

GARFINKEL, T. Traps and Pitfalls: Practical Problems in Sys-
tem Call Interposition Based Security Tools. In Proceedings of
the 2003 Network and Distributed System Security Symposium
(NDSS) (February 2003).

GoOLUB, D., DEAN, R., FORIN, A., AND RASHID, R. Unix
as an Application Program. In Proceedings of the 1990 USENIX
Summer Conference (1990).

GOOGLE INC. Chromium OS, 2010.
chromium.org/chromium-os.

http://www.

GRIER, C., TANG, S., AND KING, S. T. Secure web brows-
ing with the OP web browser. In Proceedings of the 2008 IEEE
Symposium on Security and Privacy (May 2008), pp. 402-416.

HARTIG, H., HOHMUTH, M., LIEDTKE, J., WOLTER, J., AND
SCHONBERG, S. The performance of p-kernel-based systems. In
SOSP ’97: Proceedings of the sixteenth ACM Symposium on Op-
erating Systems Principles (New York, NY, USA, 1997), ACM,
pp. 66-77.

HERDER, J. N., Bos, H., GrAS, B., HOMBURG, P., AND
TANENBAUM, A. S. MINIX 3: a highly reliable, self-repairing
operating system. SIGOPS Oper. Syst. Rev. 40, 3 (2006), 80—89.

IOANNIDIS, S., AND BELLOVIN, S. M. Building a secure web
browser. In Proceedings of the FREENIX Track: 2001 USENIX
Annual Technical Conference (June 2001).

IOANNIDIS, S., BELLOVIN, S. M., AND SMITH, J. Sub-
operating systems: A new approach to application security. In
SIGOPS European Workshop (September 2002).

KAASHOEK, M. F., ENGLER, D. R., GANGER, G. R.,
BRICENO, H. M., HUNT, R., MAZIERES, D., PINCKNEY, T.,
GRIMM, R., JANNOTTI, J., AND MACKENZIE, K. Application
performance and flexibility on exokernel systems. In SOSP ’97:
Proceedings of the sixteenth ACM symposium on Operating sys-
tems principles (New York, NY, USA, 1997), ACM, pp. 52-65.

KLEIN, G., ELPHINSTONE, K., HEISER, G., ANDRONICK, J.,
CocCK, D., DERRIN, P., ELKADUWE, D., ENGELHARDT, K.,
KOLANSKI, R., NORRISH, M., SEWELL, T., TUCH, H., AND
WINWOOD, S. selL4: formal verification of an os kernel. In
SOSP ’09: Proceedings of the ACM SIGOPS 22nd symposium
on Operating systems principles (New York, NY, USA, 2009),
ACM, pp. 207-220.

KROHN, M., YIp, A., BRODSKY, M., CLIFFER, N.,
KAASHOEK, M. F., KOHLER, E., AND MORRIS, R. Informa-
tion flow control for standard OS abstractions. In SOSP ’07: Pro-
ceedings of twenty-first ACM Symposium on Operating Systems
Principles (New York, NY, USA, 2007), ACM, pp. 321-334.

LAWRENCE, E. Combating clickjacking with x-
frame-options, March 2010. http://blogs.msdn.
com/b/ieinternals/archive/2010/03/30/
compbating-clickjacking-with-x-frame-options.
aspx.

LESLIE, B., AND HEISER, G. Towards untrusted device drivers.
Tech. rep., UNSW-CSE-TR-0303, 2003.

LEVASSEUR, J., UHLIG, V., STOESS, J., AND GOTZ, S. Un-
modified Device Driver Reuse and Improved System Dependabil-
ity via Virtual Machines. In Proceedings of the 2004 Symposium

30

9th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’10)

USENIX Association

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[40]

[47]

[48]

[49]

[50]

[51]

[52]

on Operating Systems Design and Implementation (OSDI) (De-
cember 2004).

MOSHCHUK, A., BRAGIN, T., GRIBBLE, S. D., AND LEVY,
H. M. A crawler-based study of spyware on the web. In Pro-
ceedings of the 2006 Network and Distributed System Security
Symposium (NDSS) (February 2006).

MOSHCHUK, A., AND WANG, H. J. Resource Management for
Web Applications in ServiceOS. Tech. rep., Microsoft Research,
May 2010.

OKHRAVI, H., AND NICOL, D. M. Trustgraph: Trusted graphics
subsystem for high assurance systems. In ACSAC ’09: Proceed-
ings of the 2009 Annual Computer Security Applications Con-
ference (Washington, DC, USA, 2009), IEEE Computer Society,
pp- 254-265.

PALM INC. webOS, 2010. http://opensource.palm.
com.

PrROVOS, N., MAVROMMATIS, P., RAJAB, M. A., AND MON-
ROSE, F. All your iFRAMESs point to us. In Proceedings of the
17th Usenix Security Symposium (July 2008), pp. 1-15.

PrOVOS, N., MCNAMEE, D., MAVROMMATIS, P., WANG, K.,
AND MODADUGU, N. The ghost in the browser: Analysis of
Web-based malware. In Proceedings of the 2007 Workshop on
Hot Topics in Understanding Botnets (HotBots) (April 2007).

REIS, C., AND GRIBBLE, S. D. Isolating web programs in mod-
ern browser architectures. In Proceedings of the 2009 EuroSys
conference (2009).

REIs, C., GRIBBLE, S. D., AND LEVY, H. M. Architec-
tural principles for safe web programs. In Proceedings of the
Sixth Workshop on Hot Topics in Networks (HotNets) (November
2007).

SHAPIRO, J. S., SMITH, J. M., AND FARBER, D. J. EROS:
a fast capability system. In SOSP ’99: Proceedings of the sev-
enteenth ACM symposium on Operating systems principles (New
York, NY, USA, 1999), ACM, pp. 170-185.

SHAPIRO, J. S., VANDERBURGH, J., NORTHUP, E., AND CHIZ-
MADIA, D. Design of the EROS trusted window system. In Pro-
ceedings of the 13th conference on USENIX Security Symposium
(Berkeley, CA, USA, 2004), USENIX Association, pp. 12—12.

SINGH, K., MOSHCHUK, A., WANG, H. J., AND LEE, W. On
the incoherencies in web browser access control policies. In Pro-
ceedings of the IEEE Symposium on Security and Privacy (May
2010).

SWIFT, M. M., ANNAMALAI, M., BERSHAD, B. N., AND
LEVY, H. M. Recovering Device Drivers. In Proceedings of
the 2004 Symposium on Operating Systems Design and Imple-
mentation (OSDI) (December 2004).

SWIFT, M. M., BERSHAD, B. N., AND LEVY, H. M. Improv-
ing the reliability of commodity operating systems. In SOSP ’03:
Proceedings of the nineteenth ACM symposium on Operating sys-
tems principles (New York, NY, USA, 2003), ACM, pp. 207-222.

SYMANTEC INC. Symantec global Internet security threat report:
Trends for 2008, April 2009. http://www.symantec.com/
business/theme. jsp?themeid=threatreport.

TAN, L., ZHANG, X., MA, X., XIONG, W., AND ZHOU, Y. Au-
toISES: Automatically inferring security specifications and de-
tecting violations. In Proceedings of the 17th USENIX Security
Symposium (USENIX Security *08) (July-August 2008).

WANG, H. J., GRIER, C., MOSHCHUK, A., KING, S. T.,
CHOUDHURY, P., AND VENTER, H. The multi-principal OS
construction of the Gazelle web browser. In Proceedings of the
2009 USENIX Security Symposium (August 2009).

[53]

[54]

[55]

[56]

[57]

[58]

WANG, Y.-M., BECK, D., JIANG, X., ROUSSEV, R., VER-
BOWSKI, C., CHEN, S., AND KING, S. Automated Web Pa-
trol with Strider HoneyMonkeys: Finding Web sites that exploit
browser vulnerabilities. In Proceedings of the 2006 Network and
Distributed System Security Symposium (NDSS) (February 2006).

WHEELER, D. SLOCcount, 2009. http://www.dwheeler.
com/sloccount/.

WILLIAMS, D., REYNOLDS, P., WALSH, K., SIRER, E. G.,
AND SCHNEIDER, F. B. Device driver safety through a reference
validation mechanism. In OSDI 08: Proceedings of the Sth sym-
posium on operating systems design and implementation (2008).

WOODWARD, J. P. Security requirementes for systems high and
compartemented mode workstations. Tech. rep., MITRE Corp.,
1987. MTR 9992.

ZELDOVICH, N., BOYD-WICKIZER, S., KOHLER, E., AND
MAZIERES, D. Making information flow explicit in HiStar.
In OSDI *06: Proceedings of the 7th symposium on Operating
systems design and implementation (Berkeley, CA, USA, 2006),
USENIX Association, pp. 263-278.

ZHou, F., CONDIT, J., ANDERSON, Z., BAGRAK, I., EN-
NALS, R., HARREN, M., NECULA, G., AND BREWER, E.
Safedrive: safe and recoverable extensions using language-based
techniques. In OSDI ’06: Proceedings of the 7th symposium
on Operating systems design and implementation (Berkeley, CA,
USA, 2006), USENIX Association, pp. 45-60.

USENIX Association

9th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’10) 31

FlexSC: Flexible System Call Scheduling with Exception-Less System Calls

Livio Soares
University of Toronto

Abstract

For the past 30+ years, system calls have been the de facto
interface used by applications to request services from the
operating system kernel. System calls have almost uni-
versally been implemented as a synchronous mechanism,
where a special processor instruction is used to yield user-
space execution to the kernel. In the first part of this
paper, we evaluate the performance impact of traditional
synchronous system calls on system intensive workloads.
We show that synchronous system calls negatively affect
performance in a significant way, primarily because of
pipeline flushing and pollution of key processor structures
(e.g., TLB, data and instruction caches, etc.).

We propose a new mechanism for applications to
request services from the operating system kernel:
exception-less system calls. They improve processor effi-
ciency by enabling flexibility in the scheduling of operat-
ing system work, which in turn can lead to significantly in-
creased temporal and spacial locality of execution in both
user and kernel space, thus reducing pollution effects on
processor structures. Exception-less system calls are par-
ticularly effective on multicore processors. They primar-
ily target highly threaded server applications, such as Web
servers and database servers.

We present FlexSC, an implementation of exception-
less system calls in the Linux kernel, and an accompany-
ing user-mode thread package (FlexSC-Threads), binary
compatible with POSIX threads, that translates legacy
synchronous system calls into exception-less ones trans-
parently to applications. We show how FlexSC improves
performance of Apache by up to 116%, MySQL by up to
40%, and BIND by up to 105% while requiring no modi-
fications to the applications.

1 Introduction

System calls are the de facto interface to the operating sys-
tem kernel. They are used to request services offered by,
and implemented in the operating system kernel. While

Michael Stumm
University of Toronto

Syscall impact on user-mode IPC

[EN
w o

-
=

Lost performance (cycles)

User-mode IPC
(higher is faster)

Syscall exception
0.

0 2000 4000 6000 8000 10000 12000 14000 16000
Time (in cycles)

e 9o
w o N ©

Figure 1: User-mode instructions per cycles (IPC) of Xalan
(from SPEC CPU 2006) in response to a system call exception
event, as measured on an Intel Core i7 processor.

different operating systems offer a variety of different ser-
vices, the basic underlying system call mechanism has
been common on all commercial multiprocessed operat-
ing systems for decades. System call invocation typically
involves writing arguments to appropriate registers and
then issuing a special machine instruction that raises a
synchronous exception, immediately yielding user-mode
execution to a kernel-mode exception handler. Two im-
portant properties of the traditional system call design are
that: (1) a processor exception is used to communicate
with the kernel, and (2) a synchronous execution model is
enforced, as the application expects the completion of the
system call before resuming user-mode execution. Both of
these effects result in performance inefficiencies on mod-
€rn processors.

The increasing number of available transistors on a chip
(Moore’s Law) has, over the years, led to increasingly
sophisticated processor structures, such as superscalar
and out-of-order execution units, multi-level caches, and
branch predictors. These processor structures have, in
turn, led to a large increase in the performance poten-
tial of software, but at the same time there is a widening
gap between the performance of efficient software and the
performance of inefficient software, primarily due to the
increasing disparity of accessing different processor re-
sources (e.g., registers vs. caches vs. memory). Server
and system-intensive workloads, which are of particular

USENIX Association

9th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’10) 33

interest in our work, are known to perform well below the
potential processor throughput [11, 12, 19]. Most studies
attribute this inefficiency to the lack of locality. We claim
that part of this lack of locality, and resulting performance
degradation, stems from the current synchronous system
call interface.

Synchronous implementation of system calls negatively
impacts the performance of system intensive workloads,
both in terms of the direct costs of mode switching and,
more interestingly, in terms of the indirect pollution of
important processor structures which affects both user-
mode and kernel-mode performance. A motivating ex-
ample that quantifies the impact of system call pollution
on application performance can be seen in Figure 1. It
depicts the user-mode instructions per cycles (kernel cy-
cles and instructions are ignored) of one of the SPEC CPU
2006 benchmarks (Xalan) immediately before and after a
pwrite system call. There is a significant drop in in-
structions per cycle (IPC) due to the system call, and it
takes up to 14,000 cycles of execution before the IPC of
this application returns to its previous level. As we will
show, this performance degradation is mainly due to inter-
ference caused by the kernel on key processor structures.

To improve locality in the execution of system intensive
workloads, we propose a new operating system mecha-
nism: the exception-less system call. An exception-less
system call is a mechanism for requesting kernel services
that does not require the use of synchronous processor ex-
ceptions. In our implementation, system calls are issued
by writing kernel requests to a reserved syscall page, us-
ing normal memory store operations. The actual execu-
tion of system calls is performed asynchronously by spe-
cial in-kernel syscall threads, which post the results of
system calls to the syscall page after their completion.

Decoupling the system call execution from its invoca-
tion creates the possibility for flexible system call schedul-
ing, offering optimizations along two dimensions. The
first optimization allows for the deferred batch execution
of system calls resulting in increased temporal locality of
execution. The second provides the ability to execute sys-
tem calls on a separate core, in parallel to executing user-
mode threads, resulting in spatial, per core locality. In
both cases, system call threads become a simple, but pow-
erful abstraction.

One interesting feature of the proposed decoupled sys-
tem call model is the possibility of dynamic core special-
ization in multicore systems. Cores can become temporar-
ily specialized for either user-mode or kernel-mode execu-
tion, depending on the current system load. We describe
how the operating system kernel can dynamically adapt
core specialization to the demands of the workload.

One important challenge of our proposed system is how

to best use the exception-less system call interface. One
option is to rewrite applications to directly interface with

the exception-less system call mechanism. We believe the
lessons learned by the systems community with event-
driven servers indicate that directly using exception-less
system calls would be a daunting software engineer-
ing task. For this reason, we propose a new M-on-IN
threading package (M user-mode threads executing on N
kernel-visible threads, with M >> N). The main purpose
of this threading package is to harvest independent sys-
tem calls by switching threads, in user-mode, whenever a
thread invokes a system call.
This research makes the following contributions:

e We quantify, at fine granularity, the impact of syn-
chronous mode switches and system call execution on
the micro-architectural processor structures, as well as
on the overall performance of user-mode execution.

e We propose a new operating system mechanism, the
exception-less system call, and describe an implemen-
tation, FlexSC', in the Linux kernel.

e We present a M-on-N threading system, compati-
ble with PThreads, that transparently uses the new
exception-less system call facility.

e We show how exception-less system calls coupled with
our M-on-N threading system improves performance
of important system-intensive highly threaded work-
loads: Apache by up to 116%, MySQL by to 40%, and
BIND by up to 105%.

2 The (Real) Costs of System Calls

In this section, we analyze the performance costs associ-
ated with a traditional, synchronous system call. We ana-
lyze these costs in terms of mode switch time, the system
call footprint, and the effect on user-mode and kernel-
mode IPC. We used the Linux operating system kernel
and an Intel Nehalem (Core i7) processor, along with its
performance counters to obtain our measurements. How-
ever, we believe the lessons learned are applicable to most
modern high-performance processors® and other operat-
ing system kernels.

2.1 Mode Switch Cost

Traditionally, the performance cost attributed to system
calls is the mode switch time. The mode switch time con-
sists of the time necessary to execute the appropriate sys-
tem call instruction in user-mode, resuming execution in
an elevated protection domain (kernel-mode), and the re-
turn of control back to user-mode. Modern processors im-
plement the mode switch as a processor exception: flush-
ing the user-mode pipeline, saving a few registers onto the

IPronounced as “flex” (/'fleks/).
2Experiments performed on an older PowerPC 970 processor yielded
similar insights than the ones presented here.

34

9th USENIX Symposium on Operating Systems Design and Implementation (OSDI *10)

USENIX Association

[Syscall [Instructions [Cycles [IPC [i-cache [d-cache [L2 [L3 [d-TLB
stat 4972 13585 | 0.37 32 186 660 | 2559 21
pread 3739 12300 | 0.30 32 294 679 | 2160 20
pwrite 5689 | 31285 | 0.18 50 373 985 | 3160 44
open+close 6631 19162 | 0.34 47 240 900 | 3534 28
mmap-munmap 8977 19079 | 047 41 233 869 | 3913 7
open+write4close 9921 | 32815 | 0.30 78 481 | 1462 | 5105 49

Table 1: System call footprint of different processor structures. For the processors structures (caches and TLB), the numbers represent
number of entries evicted; the cache line for the processor is of 64-bytes. i-cache and d-cache refer to the instruction and data sections
of the L1 cache, respectively. The d-TLB represents the data portion of the TLB.

kernel stack, changing the protection domain, and redi-
recting execution to the registered exception handler. Sub-
sequently, return from exception is necessary to resume
execution in user-mode.

We measured the mode switch time by implement-
ing a new system call, gettsc that obtains the time
stamp counter of the processor and immediately returns
to user-mode. We created a simple benchmark that in-
voked gettsc 1 billion times, recording the time-stamp
before and after each call. The difference between each
of the three time-stamps identifies the number of cycles
necessary to enter and leave the operating system kernel,
namely 79 cycles and 71 cycles, respectively. The total
round-trip time for the gettsc system call is modest at
150 cycles, being less than the latency of a memory ac-
cess that misses the processor caches (250 cycles on our
machine).?

2.2 System Call Footprint

The mode switch time, however, is only part of the cost of
a system call. During kernel-mode execution, processor
structures including the L1 data and instruction caches,
translation look-aside buffers (TLB), branch prediction ta-
bles, prefetch buffers, as well as larger unified caches (L2
and L3), are populated with kernel specific state. The re-
placement of user-mode processor state by kernel-mode
processor state is referred to as the processor state pollu-
tion caused by a system call.

To quantify the pollution caused by system calls, we
used the Core 17 hardware performance counters (HPC).
We ran a high instruction per cycle (IPC) workload,
Xalan, from the SPEC CPU 2006 benchmark suite that
is known to invoke few system calls. We configured an
HPC to trigger infrequently (once every 10 million user-
mode instructions) so that the processor structures would
be dominated with application state. We then set up the
HPC exception handler to execute specific system calls,
while measuring the replacement of application state in
the processor structures caused by kernel execution (but
not by the performance counter exception handler itself).

3For all experiments presented in this paper, user-mode applications
execute in 64-bit mode and when using synchronous system calls, use
the “syscall” x86_-64 instruction, which is currently the default in Linux.

Table 1 shows the footprint on several processor struc-
tures for three different system calls and three system call
combinations. The data shows that, even though the num-
ber of i-cache lines replaced is modest (between 2 and
5 KB), the number of d-cache lines replaced is signifi-
cant. Given that the size of the d-cache on this processor
is 32 KB, we see that the system calls listed pollute at
least half of the d-cache, and almost all of the d-cache in
the “open-+write4-close” case. The 64 entry first level d-
TLB is also significantly polluted by most system calls.
Finally, it is interesting to note that the system call impact
on the L2 and L3 caches is larger than on the L1 caches,
primarily because the L2 and L3 caches use more aggres-
sive prefetching.

2.3 System Call Impact on User IPC

Ultimately, the most important measure of the real cost
of system calls is the performance impact on the applica-
tion. To quantify this, we executed an experiment similar
to the one described in the previous subsection. However,
instead of measuring kernel-mode events, we only mea-
sured user-mode instructions per cycle (IPC), ignoring all
kernel execution. Ideally, user-mode IPC should not de-
crease as a result of invoking system calls, since the cy-
cles and instructions executed as part of the system call
are ignored in our measurements. In practice, however,
user-mode IPC is affected by two sources of overhead:

Direct: The processor exception associated with the sys-
tem call instruction that flushes the processor pipeline.

Indirect: System call pollution on the processor struc-
tures, as quantified in Table 1.

Figures 2 and 3 show the degradation in user-mode IPC
when running Xalan (from SPEC CPU 2006) and SPEC-
JBB, respectively, given different frequencies of pwrite
calls. These benchmarks were chosen since they have
been created to avoid significant use of system services,
and should spend only 1-2% of time executing in kernel-
mode. The graphs show that different workloads can have
different sensitivities to system call pollution. Xalan has
a baseline user-mode IPC of 1.46, but the IPC degrades
by up to 65% when executing a pwrite every 1,000-
2,000 instructions, yielding an IPC between 0.58 and 0.50.

USENIX Association

9th USENIX Symposium on Operating Systems Design and Implementation (OSDI *10) 35

[Indirect
[Direct

Degradation
(lower is faster)

0%
1K 2K 5K 10K 20K

instructions between interrupts (log scale)

50K 100K 500K

Figure 2: System call (pwrite) impact on user-mode IPC as a
function of system call frequency for Xalan.

50%

[Indirect
[Direct

40%

30%

20%

Degradation
(lower is faster)

-
S
R

0%
1K 2K 5K 10K 20K 50K 100K 500K

instructions between interrupts (log scale)

Figure 3: System call (pwrite) impact on user-mode IPC as a
function of system call frequency for SPEC JBB.

SPEC-JBB has a slightly lower baseline of 0.97, but still
observes a 45% degradation of user-mode IPC.

The figures also depict the breakdown of user-mode
IPC degradation due to direct and indirect costs. The
degradation due to the direct cost was measured by issu-
ing a null system call, while the indirect portion is cal-
culated subtracting the direct cost from the degradation
measured when issuing a pwrite system call. For high
frequency system call invocation (once every 2,000 in-
structions, or less), the direct cost of raising an exception
and subsequent flushing of the processor pipeline is the
largest source of user-mode IPC degradation. However,
for medium frequencies of system call invocation (once
per 2,000 to 100,000 instructions), the indirect cost of sys-
tem calls is the dominant source of user-mode IPC degra-
dation.

To understand the implication of these results on typi-
cal server workloads, it is necessary to quantify the sys-
tem call frequency of these workloads. The average user-
mode instruction count between consecutive system calls
for three popular server workloads are shown in Table 2.
For this frequency range in Figures 2 and 3 we observe
user-mode IPC performance degradation between 20%
and 60%. While the excecution of the server workloads
listed in Table 2 is not identical to that of Xalan or SPEC-

Workload (server) Instructions per Syscall

DNSbench (BIND) 2445
ApacheBench (Apache) 3368
Sysbench (MySQL) 12435

Table 2: The average number of instructions executed on differ-
ent workloads before issuing a syscall.

Degradation
lower is faster)

(
a
o o
N

%
100 500 1K 2K 5K 10K 20K 50K 100K 500K
instructions between interrupts (log scale)

Figure 4: System call (pwrite), impact on kernel-mode IPCs
for x as a function of system call frequency.

JBB, the data presented here indicates that server work-
loads suffer from significant performance degradation due
to processor pollution of system calls.

24

The lack of locality due to frequent mode switches also
negatively affects kernel-mode IPC. Figure 4 shows the
impact of different system call frequencies on the kernel-
mode IPC. As expected, the performance trend is opposite
to that of user-mode execution. The more frequent the
system calls, the more kernel state is maintained in the
Pprocessor.

Note that the kernel-mode IPC listed in Table 1 for dif-
ferent system calls ranges from 0.18 to 0.47, with an av-
erage of 0.32. This is significantly lower than the 1.47
and 0.97 user-mode IPC for Xalan and SPEC-JBB, re-
spectively; up to 8x slower.

Mode Switching Cost on Kernel IPC

3 Exception-Less System Calls

To address (and partially eliminate) the performance im-
pact of traditional, synchronous system calls on system
intensive workloads, we propose a new operating system
mechanism called exception-less system call. Exception-
less system call is a mechanism for requesting kernel ser-
vices that does not require the use of synchronous pro-
cessor exceptions. The key benefit of exception-less sys-
tem calls is the flexibility in scheduling system call execu-
tion, ultimately providing improved locality of execution
of both user and kernel code. We explore two use cases:

System call batching: Delaying the execution of a series
of system calls and executing them in batches minimizes
the frequency of switching between user and kernel execu-
tion, eliminating some of the mode switch overhead and
allowing for improved temporal locality. This improves
both the direct and indirect costs of system calls.

Core specialization: In multicore systems, exception-
less system calls allow a system call to be scheduled on
a core different than the one on which the system call was
invoked. Scheduling system calls on a separate processor
core allows for improved spatial locality and with it lower

36

9th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’10)

USENIX Association

i User

-------------- call

Ke_rﬁgl_—_&___ Kernel
2 Exception! 2 2 2 2 page

Exception!

(b) Exception-less system call

sys

(a) Traditional, sync. system call

Figure 5: Illustration of synchronous and exception-less system
call invocation. The left diagram shows the sequential nature
of exception-based system calls, while the right diagram depicts
exception-less user and kernel communication through shared
memory.

syscall | number of

return
status |arg0 | o o o |argé
number

arguments value

Figure 6: 64-byte syscall entry from the syscall page.

indirect costs. In an ideal scenario, no mode switches are
necessary, eliminating the direct cost of system calls.

The design of exception-less system calls consists of
two components: (1) an exception-less interface for user-
space threads to register system calls, along with (2) an
in-kernel threading system that allows the delayed (asyn-
chronous) execution of system calls, without interrupting
or blocking the thread in user-space.

3.1 Exception-Less Syscall Interface

The interface for exception-less system calls is simply a
set of memory pages that is shared amongst user and ker-
nel space. The shared memory page, henceforth referred
to as syscall page, is organized to contain exception-less
system call entries. Each entry contains space for the re-
quest status, system call number, arguments, and return
value.

With traditional synchronous system calls, invocation
occurs by populating predefined registers with system call
information and issuing a specific machine instruction that
immediately raises an exception. In contrast, to issue an
exception-less system call, the user-space threads must
find a free entry in the syscall page and populate the en-
try with the appropriate values using regular store instruc-
tions. The user-space thread can then continue executing
without interruption. It is the responsibility of the user-
space thread to later verify the completion of the system
call by reading the status information in the entry. None
of these operations, issuing a system call or verifying its
completion, causes exceptions to be raised.

3.2 Syscall Pages

Syscall pages can be viewed as a table of syscall en-
tries, each containing information specific to a single sys-
tem call request, including the system call number, ar-
guments, status (free/submitted/busy/done), and the result

(Figure 6). In our 64-bit implementation, we have orga-
nized each entry to occupy 64 bytes. This size comes from
the Linux ABI which allows any system call to have up to
6 arguments, and a return value, totalling 56 bytes. Al-
though the remaining 3 fields (syscall number, status and
number of arguments) could be packed in less than the
remaining 8 bytes, we selected 64 bytes because 64 is a
divisor of popular cache line sizes of today’s processor.
To issue an exception-less system call, the user-space
thread must find an entry in one of its syscall pages that
contain a free status field. It then writes the syscall num-
ber and arguments to the entry. Lastly, the status field is
changed to submitted*, indicating to the kernel that the re-
quest is ready for execution. The thread must then check
the status of the entry until it becomes done, consume the
return value, and finally set the status of the entry to free.

3.3 Decoupling Execution from Invocation

Along with the exception-less interface, the operating sys-
tem kernel must support delayed execution of system
calls. Unlike exception-based system calls, the exception-
less system call interface does not result in an explicit ker-
nel notification, nor does it provide an execution stack. To
support decoupled system call execution, we use a spe-
cial type of kernel thread, which we call syscall thread.
Syscall threads always execute in kernel mode, and their
sole purpose is to pull requests from syscall pages and ex-
ecute them on behalf of the user-space thread. Figure 5
illustrates the difference between traditional synchronous
system calls, and our proposed split system call model.

The combination of the exception-less system call in-
terface and independent syscall threads allows for great
flexibility in the scheduling the execution of system calls.
Syscall threads may wake up only after user-space is un-
able to make further progress, in order to achieve tempo-
ral locality of execution on the processor. Orthogonally,
syscall threads can be scheduled on a different processor
core than that of the user-space thread, allowing for spa-
tial locality of execution. On modern multicore proces-
sors, cache to cache communication is relatively fast (in
the order of 10s of cycles), so communicating the entries
of syscall pages from a user-space core to a kernel core, or
vice-versa, should only cause a small number of processor
stalls.

3.4 Implementation — FlexSC

Our implementation of the exception-less system call
mechanism is called FlexSC (Flexible System Call) and
was prototyped as an extension to the Linux kernel. Al-
though our implementation was influenced by a mono-

4User-space must update the status field last, with an appropriate
memory barrier, to prevent the kernel from selecting incomplete syscall
entries to execute.

USENIX Association

9th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’10) 37

lithic kernel architecture, we believe that most of our de-
sign could be effective with other kernel architectures,
e.g., exception-less micro-kernel IPCs, and hypercalls in
a paravirtualized environment.

We have implemented FlexSC for the x86_64 and
PowerPC64 processor architectures. Porting FlexSC to
other architectures is trivial; a single function is needed,
which moves arguments from the syscall page to appropri-
ate registers, according to the ABI of the processor archi-
tecture. Two new system calls were added to Linux as part
of FlexSC, flexsc_register and flexsc_wait.

flexsc_register () This system call is used by pro-
cesses that wish to use the FlexSC facility. Making this
registration procedure explicit is not strictly necessary, as
processes can be registered with FlexSC upon creation.
We chose to make it explicit mainly for convenience of
prototyping, giving us more control and flexibility in user-
space. One legitimate reason for making registration ex-
plicit is to avoid the extra initialization overheads incurred
for processes that do not use exception-less system calls.

Invocation of the flexsc_register system call must
use the traditional, exception-based system call interface
to avoid complex bootstrapping; however, since this sys-
tem call needs to execute only once, it does not impact
application performance. Registration involves two steps:
mapping one or more syscall pages into user-space virtual
memory space, and spawning one syscall thread per entry
in the syscall pages.

flexsc_wait () The decoupled execution model of
exception-less system calls creates a challenge in user-
space execution, namely what to do when the user-space
thread has nothing more to execute and is waiting on
pending system calls. With the proposed execution model,
the OS kernel loses the ability to determine when a user-
space thread should be put to sleep. With synchronous
system calls, this is simply achieved by putting the thread
to sleep while it is executing a system call if the call blocks
waiting for a resource.

The solution we adopted is to require that the user ex-
plicitly communicate to the kernel that it cannot progress
until one of the issued system calls completes by invok-
ing the flexsc_wait system call. We implemented
flexsc_wait as an exception-based system call, since
execution should be synchronously directed to the kernel.
FlexSC will later wake up the user-space thread when at
least one of posted system calls are complete.

3.5 Syscall Threads

Syscall threads is the mechanism used by FlexSC to allow
for exception-less execution of system calls. The Linux
system call execution model has influenced some imple-
mentation aspects of syscall threads in FlexSC: (1) the vir-
tual address space in which system call execution occurs

is the address space of the corresponding process, and (2)
the current thread context can be used to block execution
should a necessary resource not be available (for example,
waiting for I/O).

To resolve the virtual address space requirement,
syscall threads are created during flexsc_register.
Syscall threads are thus “cloned” from the registering pro-
cess, resulting in threads that share the original virtual ad-
dress space. This allows the transfer of data from/to user-
space with no modification to Linux’s code.

FlexSC would ideally never allow a syscall thread to
sleep. If a resource is not currently available, notification
of the resource becoming available should be arranged,
and execution of the next pending system call should be-
gin. However, implementing this behavior in Linux would
require significant changes and a departure from the basic
Linux architecture. Instead, we adopted a strategy that al-
lows FlexSC to maintain the Linux thread blocking archi-
tecture, as well as requiring only minor modifications (3
lines of code) to Linux context switching code, by creat-
ing multiple syscall threads for each process that registers
with FlexSC.

In fact, FlexSC spawns as many syscall threads as there
are entries available in the syscall pages mapped in the
process. This provisions for the worst case where ev-
ery pending system call blocks during execution. Spawn-
ing hundreds of syscall threads may seem expensive, but
Linux in-kernel threads are typically much lighter weight
than user threads: all that is needed is a task_struct
and a small, 2-page, stack for execution. All the other
structures (page table, file table, etc.) are shared with the
user process. In total, only 10KB of memory is needed
per syscall thread.

Despite spawning multiple threads, only one syscall
thread is active per application and core at any given point
in time. If system calls do not block all the work is exe-
cuted by a single syscall thread, while the remaining ones
sleep on a work-queue. When a syscall thread needs to
block, for whatever reason, immediately before it is put
to sleep, FlexSC notifies the work-queue. Another thread
wakes-up and immediately starts executing the next sys-
tem call. Later, when resources become free, current
Linux code wakes up the waiting thread (in our case, a
syscall thread), and resumes its execution, so it can post its
result to the syscall page and return to wait in the FlexSC
work-queue.

3.6 FlexSC Syscall Thread Scheduler

FlexSC implements a syscall thread scheduler that is re-
sponsible for determining when and on which core sys-
tem calls will execute. This scheduler is critical to per-
formance, as it influences the locality of user and kernel
execution.

38

9th USENIX Symposium on Operating Systems Design and Implementation (OSDI *10)

USENIX Association

On a single-core environment, the FlexSC scheduler
assumes the user-space will attempt to post as many
exception-less system calls as possible, and subsequently
call flexsc_wait (). The FlexSC scheduler then
wakes up an available syscall thread that starts executing
the first system call. If the system call does not block,
the same syscall thread continues to execute the next sub-
mitted syscall entry. If the execution of a syscall thread
blocks, the currently scheduled syscall thread notifies the
scheduler to wake another thread to continue to execute
more system calls. The scheduler does not wake up the
user-space thread until all available system calls have been
issued, and have either finished or are currently blocked
with at least one system call having been completed. This
is done to minimize the number of mode switches to user-
space.

For multicore execution, the scheduler biases execution
of syscall threads on a subset of available cores, dynam-
ically specializing cores according to the workload re-
quirements. In our current implementation, this is done
by attempting to schedule syscall threads using a prede-
termined, static list of cores. Upon a scheduling decision,
the first core on the list is selected. If a syscall thread of
a process is currently running on that core, the next core
on the list is selected as the target. If the selected core is
not currently executing a syscall thread, an inter-processor
interrupt is sent to the remote core, signalling that it must
wake a syscall thread.

As previously described, there is never more than one
syscall thread concurrently executing per core, for a given
process. However in the multicore case, for the same pro-
cess, there can be as many syscall threads as cores con-
currently executing on the entire system. To avoid cache-
line contention of syscall pages amongst cores, before a
syscall thread begins executing calls from a syscall page,
it locks the page until all its submitted calls have been
issued. Since FlexSC processes typically map multiple
syscall pages, each core on the system can schedule a
syscall thread to work independently, executing calls from
different syscall pages.

4 System Calls Galore — FlexSC-Threads

Exception-less system calls present a significant change to
the semantics of the system call interface with potentially
drastic implications for application code and program-
mers. Programming using exception-less system calls di-
rectly is more complex than using synchronous system
calls, as they do not provide the same, easy-to-reason-
about sequentiality. In fact, our experience is that pro-
gramming using exception-less system calls is akin to
event-driven programming, which has itself been criti-
cized for being a complex programming model [21]. The
main difference is that with exception-less system calls,

not only are I/O related calls scheduled for future comple-
tion, any system calls can be requested, verified for com-
pletion, and handled, as if it were an asynchronous event.

To address the programming complexities, we propose
the use of exception-less system calls in two different
modes that might be used depending on the concurrency
model adopted by the programmer. We argue that if used
according to our recommendations, exception-less sys-
tem calls should pose no more complexity than their syn-
chronous counter-parts.

4.1 Event-driven Servers, a Case for Hybrid
Execution

For event-driven systems, we advocate a hybrid approach
where both synchronous and exception-less system calls
coexist. System calls that are executed in performance
critical paths of applications should use exception-less
calls while all other calls should be synchronous. After
all, there is no good justification to make a simple getpid()
complex to program.

Event-driven servers already have their code structured
so that performance critical paths of execution are split
into three parts: request event, wait for completion and
handle event. Adapting an event-driven server to use
exception-less system calls, for the already considered
events, should be straightforward. However, we have not
yet attempted to evaluate the use of exception-less system
calls in an event-driven program, and leave this as future
work.

4.2 FlexSC-Threads

Multiprocessing has become the default for computation
on servers. With the emergence and ubiquity of multi-
core processors, along with projection of future chip man-
ufacturing technologies, it is unlikely that this trend will
reverse in the medium future. For this reason, and be-
cause of its relative simplicity vis-a-vis event-based pro-
gramming, we believe that the multithreading concur-
rency model will continue to be the norm.

In this section, we describe the design and implementa-
tion of FlexSC-Threads, a threading package that trans-
forms legacy synchronous system calls into exception-
less ones transparently to applications. It is intended
for server-type applications with many user-mode threads,
such as Apache or MySQL. FlexSC-Threads is compli-
ant with POSIX Threads, and binary compatible with
NPTL [8], the default Linux thread library. As a re-
sult, Linux multi-threaded programs work with FlexSC-
Threads “out of the box™ without modification or recom-
pilation.

FlexSC-Threads uses a simple M-on-N threading
model (M user-mode threads executing on N kernel-

USENIX Association

9th USENIX Symposium on Operating Systems Design and Implementation (OSDI *10) 39

one kernel-visible thread per core

multiple user-mode
threads
User
caII
pages

Kernel

multiple syscall
threads per core

user-mode switch

Figure 7: The left-most diagram depicts the components of FlexSC-Threads pertaining to a single core. Each core executes a pinned

kernel-visible thread, which in turn can multiplex multiple user-mode threads.

Multiple syscall pages, and consequently syscall

threads, are also allocated (and pinned) per core. The middle diagram depicts a user-mode thread being preempted as a result of
issuing a system call. The right-most diagram depicts the scenario where all user-mode threads are waiting for system call requests;
in this case FlexSC-Threads library synchronously invokes flexsc_wait () to the kernel.

Kernel

Core 0

Figure 8: Multicore example. Opaque threads are active, while
grayed-out threads are inactive. Syscall pages are accessible to
both cores, as we run using shared-memory, leveraging the fast
on-chip communication of multicores.

visible threads). We rely on the ability to perform user-
mode thread switching solely in user-space to transpar-
ently transform legacy synchronous calls into exception-
less ones. This is done as follows:

1. We redirect to our library each [libc call that issues a
legacy system call. Typically, applications do not di-
rectly embed code to issue system calls, but instead
call wrappers in the dynamically loaded libc. We use
the dynamic loading capabilities of Linux to redirect
execution of such calls to our library.

2. FlexSC-Threads then post the corresponding
exception-less system call to a syscall page and
switch to another user-mode thread that is ready.

3. If we run out of ready user-mode threads, FlexSC
checks the syscall page for any syscall entries that
have been completed, waking up the appropriate
user-mode thread so it can obtain the result of the
completed system call.

4. As alast resort, flexsc_wait () is called, putting
the kernel visible thread to sleep until one of the
pending system calls has completed.

FlexSC-Threads implements multicore support by cre-
ating a single kernel visible thread per core available to
the process, and pinning each kernel visible thread to a

specific core. Multiple user-mode threads multiplex exe-
cution on the kernel visible thread. Since kernel-visitble
threads only block when there is no more available work,
there is no need to create more than one kernel visi-
ble thread per core. Figure 7 depicts the components of
FlexSC-Threads and how they interact during execution.

As an optimization, we have designed FlexSC-Threads
to register a private set of syscall pages per kernel vis-
ible thread (i.e., per core). Since syscall pages are pri-
vate to each core, there is no need to synchronize their
access with costly atomic instructions. The FlexSC-
Threads user-mode scheduler implements a simple form
of cooperative scheduling, with system calls acting as
yield points. Consequently, syscall pages behave as lock-
free single-producer (kernel-visible thread) and single-
consumer (syscall thread) data structures.

From the kernel side, although syscall threads are
pinned to specific cores, they do not only execute system
call requests from syscall pages registered to that core. An
example of this is shown in Figure 8, where user-mode
threads execute on core 0, while syscall threads running
on core | are satisfying system call requests.

It is important to note that FlexSC-Threads relies on a
large number of independent user-mode threads to post
concurrent exception-less system calls. Since threads are
executing independently, there is no constraint on order-
ing or serialization of system call execution (thread-safety
constraints should be enforced at the application level
and is orthogonal to the system call execution model).
FlexSC-Threads leverages the independent requests to ef-
ficiently schedule operating system work on single or mul-
ticore systems. For this reason, highly threaded work-
loads, such as internet/network servers, are ideal candi-
dates for FlexSC-Threads.

S Experimental Evaluation

We first present the results of a microbenchmark that
shows the overhead of the basic exception-less system

40

9th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’10)

USENIX Association

[Component | Specification

Cores 4
Cache line 64 B for all caches
Private L1 i-cache 32 KB, 3 cycle latency
Private L1 d-cache 32 KB, 4 cycle latency
Private L2 cache 512 KB, 11 cycle latency
Shared L3 cache 8 MB, 35-40 cycle latency

Memory 250 cycle latency (avg.)
TLB (L1) 64 (data) + 64 (instr.) entries
TLB (L2) 512 entries

Table 3: Characteristics of the 2.3GHz Core i7 processor.

90

- 80 = flexsc
e 70‘ ==sync
§ 60
o 50
2 40
230
g 20
F
0 10 20 30 40 50 60 70

Number of batched requests
Figure 9: Exception-less system call cost on a single-core.

call mechanism, and then we show the performance of
two popular server applications, Apache and MySQL,
transparently using exception-less system calls through
FlexSC-Threads. Finally, we analyze the sensitivity of
the performance of FlexSC to the number of system call
pages.

FlexSC was implemented in the Linux kernel, version
2.6.33. The baseline line measurements we present were
collected using unmodified Linux (same version), and the
default native POSIX threading library (NPTL). We iden-
tify the baseline configuration as “sync”, and the system
with exception-less system calls as “flexsc”.

The experiments presented in this section were run on
an Intel Nehalem (Core i7) processor with the character-
istics shown in Table 3. The processor has 4 cores, each
with 2 hyper-threads. We disabled the hyper-threads, as
well as the “TurboBoost” feature, for all our experiments
to more easily analyze the measurements obtained.

For the Apache and MySQL experiments, requests
were generated by a remote client connected to our test
machine through a 1 Gbps network, using a dedicated
router. The client machine contained a dual core Core2
processor, running the same Linux installation as the test
machine, and was not CPU or network constrained in any
of the experiments.

All values reported in our evaluation represent the av-
erage of 5 separate runs.

5.1 Overhead

The overhead of executing an exception-less system call
involves switching to a syscall thread, de-marshalling ar-
guments from the appropriate syscall page entry, switch-

700
=¥ flexsc

600 =%=sync (same
500 core)

400
300
200
100

Time (nanoseconds)

0 10 20 30 40 50 60 70
Number of batched requests

Figure 10: Exception-less system call cost, in the worst case, for
remote core execution.

ing back to the user-thread, and retrieving the return value
from the syscall page entry. To measure this overhead,
we created a micro-benchmark that successively invokes a
getppid () system call. Since the user and kernel foot-
prints of this call is small, the time measured corresponds
to the direct cost of issuing system calls.

We varied the number of batched system calls, in the
exception-less case, to verify if the direct costs are amor-
tized when batching an increasing number of calls. The
results obtained executing on a single core are shown in
Figure 9. The baseline time, show as a horizontal line, is
the time to execute an exception-based system call on a
single core. Executing a single exception-less system call
on a single core is 43% slower than a synchronous call.
However, when batching 2 or more calls there is no over-
head, and when batching 32 or more calls, the execution
of each call is up to 130% faster than a synchronous call.

We also measured the time to execute system calls on
a remote core (Figure 10). In addition to the single core
operations, remote core execution entails sending an inter-
processor interrupt (IPI) to wake up the remote syscall
thread. In the remote core case, the time to issue a sin-
gle exception-less system call can be more than 10 times
slower than a synchronous system call on the same core.
This measurement represents a worst case scenario when
there is no currently executing syscall thread. Despite the
high overhead, the overhead on remote core execution is
recouped when batching 32 or more system calls.

5.2 Apache

We used Apache version 2.2.15 to evaluate the perfor-
mance of FlexSC-Threads. Since FlexSC-Threads is bi-
nary compatible with NPTL, we used the same Apache
binary for both FlexSC and Linux/NPTL experiments.
We configured Apache to use a different maximum num-
ber of spawned threads for each case. The performance
of Apache running on NPTL degrades with too many
threads, and we experimentally determined that 200 was
optimal for our workload and hence used that configura-
tion for the NPTL case. For the FlexSC-Threads case, we
raised the maximum number of threads to 1000.

The workload we used was ApacheBench, a HTTP

USENIX Association

9th USENIX Symposium on Operating Systems Design and Implementation (OSDI *10) 41

— 45000

45000

§ 40000 :ﬂexsc 8 40000 :fs'e:ic 8 40000

@ 35000 sync_ G 35000 v @ 35000

§ 30000 g 30000 g 30000

T 25000 & 25000 T 25000

= 20000 = 20000 (= 20000

H 15000! 3 15000 3 15000

5 10000 S 10000 5 10000

3 50001 3 5000, 3 5000, & flexsc
£ 0 £ 0 £ 0 ¥ sync
- [200 400 600 800 1000 = 0 200 400 600 800 1000 - 0 200 400 600 800 1000

Request Concurrency Request Concurrency Request Concurrency
(a) 1 Core (b) 2 Cores (c) 4 Cores

Figure 11: Comparison of Apache throughput of Linux/NPTL and FlexSC executing on 1, 2 and 4 cores.

100%
90%
80%
70%
60%
50%
40%
30%
20%
10%

0%

W idle
M user
@ kernel

W idle
W user
@ kernel

Time

Time
@
S
*

flexsc

sync flexsc sync

(a) Apache (b) MySQL
Figure 12: Breakdown of execution time of Apache and MySQL
workloads on 4 cores.

25
W sync
20 @ flexsc

a

Latency (ms)
3>

o

1 core 2 cores 4 cores

Figure 13: Comparison of Apache latency of Linux/NPTL and
FlexSC executing on 1, 2 and 4 cores, with 256 concurrent re-
quests.

workload generator that is distributed with Apache. It
is designed to stress-test the Web server determining the
number of requests per second that can be serviced, with
varying number of concurrent requests.

Figure 11 shows the results of Apache running on 1, 2
and 4 cores. For the single core experiments, FlexSC em-
ploys system call batching, and for the multicore experi-
ments it additionally dynamically redirects system calls to
maximize core locality. The results show that, except for
a very low number of concurrent requests, FlexSC outper-
forms Linux/NPTL by a wide margin. With system call
batching alone (1 core case), we observe a throughput im-
provement of up to 86%. The 2 and 4 core experiments
show that FlexSC achieves up to 116% throughput im-
provement, showing the added benefit of dynamic core
specialization.

Table 4 shows the effects of FlexSC on the microarchi-
tectural state of the processor while running Apache. It
displays various processor metrics, collected using hard-
ware performance counters during execution with 512

concurrent requests. The most important metric listed
is the instruction per cycles (IPC) of the user and ker-
nel mode for the different setups, as it summarizes the
efficiency of execution. The other values listed are nor-
malized values using misses per kilo-instructions (MPKI).
MPKI is a widely used normalization method that makes
it easy to compare values obtained from different execu-
tions.

The most efficient execution of the four listed in the
table is FlexSC on 1 core, yielding an IPC of 0.94 on both
kernel and user execution, which is 95-108% higher than
for NPTL. While the FlexSC execution of Apache on 4
cores is not as efficient as the single core case, with an
average IPC of 0.75, there is still an 71% improvement,
on average, over NPTL.

Most metrics we collected are significantly improved
with FlexSC. Of particular importance are the perfor-
mance critical structures that have a high MPKI value
on NPTL such as d-cache, i-cache, and L2 cache. The
better use of these microarchitectural structures effec-
tively demonstrates the premise of this work, namely that
exception-less system calls can improve processor effi-
ciency. The only structure which observes more misses
on FlexSC is the user-mode TLB. We are currently inves-
tigating the reason for this.

There is an interesting disparity between the through-
put improvement (94%) and the IPC improvement (71%)
in the 4 core case. The difference comes from the added
benefit of localizing kernel execution with core specializa-
tion. Figure 12a shows the time breakdown of Apache ex-
ecuting on 4 cores. FlexSC execution yields significantly
less idle time than the NPTL execution.” The reduced
idle time is a consequence of lowering the contention
on a specific kernel semaphore. Linux protects address
spaces with a per address-space read-write semaphore
(mmap-sem). Profiling shows that every Apache thread
allocates and frees memory for serving requests, and both
of these operations require the semaphore to be held with
write permission. Further, the network code in Linux in-
vokes copy__user (), which transfers data in and out
of the user address-space. This function verifies that the
user-space memory is indeed valid, and to do so acquires

5The execution of Apache on 1 or 2 core did not present idle time.

42

9th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’10)

USENIX Association

Apache User

Kernel

Setup

IPC | L3 L2 [d-cache [i-cache | TLB [Branch

IPC [L3 L2 [d-cache [i-cache | TLB [Branch

sync (1 core) 0.48 | 3.7 | 68.9 63.8 | 1308 | 7.7

209 | 045 | 1.4 | 80.0 782 | 159.6 | 4.6 15.7

flexsc (1 core) | 0.94 | 1.7 | 27.5 35.3 41.3 8.8

12.6 {094 | 1.0 | 15.8 31.6 452 | 3.3 11.2

sync (4 cores) | 0.45 | 3.9 | 64.6 67.9 1276 | 9.6

202|043 | 441|495 73.8 | 1249 | 44 15.2

flexsc (4 cores) | 0.74 | 1.0 | 37.5 55.5 494 | 19.3

13.00.76 | 1.5 | 19.1 50.2 63.7| 4.2 11.6

Table 4: Micro-architectural breakdown of Apache execution on uni- and quad-core setups. All values shown, except for IPC, are
normalized using misses per kilo-instruction (MPKI): therefore, lower numbers yield more efficient execution and higher IPC.

the semaphore with read permissions. In the NPTL case,
threads from all 4 cores compete on this semaphore, re-
sulting in 50% idle time. With FlexSC, kernel code is
dynamically scheduled to run predominantly on 2 out of
the 4 cores, halving the contention to this resource, elimi-
nating 38% of the original idle time.

Another important metric for servicing Web requests
besides throughput is latency of individual requests. One
might intuitively expect that latency of requests to be
higher under FlexSC because of batching and asyn-
chronous servicing of system calls, but the opposite is the
case. Figure 13 shows the average latency of requests
when processing 256 concurrent requests (other concur-
rency levels showed similar trends). The results show that
Web requests on FlexSC are serviced within 50-60% of
the time needed on NPTL, on average.

53 MySQL

In the previous section, we demonstrated the effectiveness
of FlexSC running on a workload with a significant pro-
portion of kernel time. In this section, we experiment with
OLTP on MySQL, a workload for which the proportion of
kernel execution is smaller (roughly 25%). Our evaluation
used MySQL version 5.5.4 with an InnoDB backend en-
gine, and as in the Apache evaluation, we used the same
binary for running on NPTL and on FlexSC. We also used
the same configuration parameters for both the NPTL and
FlexSC experiments, after tuning them for the best NPTL
performance.

To generate requests to MySQL, we used the sysbench
system benchmark utility. Sysbench was created for
benchmarking MySQL processor performance and con-
tains an OLTP inspired workload generator. The bench-
mark allows executing concurrent requests by spawning
multiple client threads, connecting to the server, and se-
quentially issuing SQL queries. To handle the concurrent
clients, MySQL spawns a user-level thread per connec-
tion. At the end, sysbench reports the number of trans-
actions per second executed by the database, as well as
average latency information. For these experiments, we
used a database with 5M rows, resulting in 1.2 GB of data.
Since we were interested in stressing the CPU component
of MySQL, we disabled synchronous transactions to disk.
Given that the configured database was small enough to
fit in memory, the workload presented no idle time due to

disk I/O.

Figure 14 shows the throughput numbers obtained on
1, 2 and 4 cores when varying the number of concur-
rent client threads issuing requests to the MySQL server.®
For this workload, system batching on one core provides
modest improvements: up to 14% with 256 concurrent re-
quests. On 2 and 4 cores, however, we see that FlexSC
provides a consistent improvement with 16 or more con-
current clients, achieving up to 37%-40% higher through-
put.

Table 5 contains the microarchitectural processor met-
rics collected for the execution of MySQL. Because
MySQL invokes the kernel less frequently than Apache,
kernel execution yields high miss rates, resulting in a low
IPC of 0.33 on NPTL. In the single core case, FlexSC does
not greatly alter the execution of user-space, but increases
kernel IPC by 36%. FlexSC allows the kernel to reuse
state in the processor structures, yielding lower misses
across most metrics. In the case of 4 cores, FlexSC also
improves the performance of user-space IPC by as much
as 30%, compared to NPTL. Despite making less of an
impact in the kernel IPC than in single core execution,
there is still a 25% kernel IPC improvement over NPTL.

Figure 15 shows the average latencies of individual re-
quests for MySQL execution with 256 concurrent clients.
As is the case with Apache, the latency of requests on
FlexSC is improved over execution on NPTL. Requests
on FlexSC are satisfied within 70-88% of the time used
by requests on NPTL.

5.4 Sensitivity Analysis

In all experiments presented so far, FlexSC was config-
ured to have 8 system call pages per core, allowing up to
512 concurrent exception-less system calls per core.
Figure 16 shows the sensitivity of FlexSC to the num-
ber of available syscall entries. It depicts the throughput
of Apache, on 1 and 4 cores, while servicing 2048 concur-
rent requests per core, so that there would always be more
requests available than syscall entries. Uni-core perfor-
mance approaches its best with 200 to 250 syscall entries

SFor both NPTL and FlexSC, increasing the load on MySQL yields
peak throughput between 32 and 128 concurrent clients after which
throughput degrades. The main reason for performance degradation is
the costly and coarse synchronization used in MySQL. MySQL and
Linux kernel developers have observed similar performance degradation.

USENIX Association

9th USENIX Symposium on Operating Systems Design and Implementation (OSDI *10) 43

500

~
=3
S

1000

450
400
350
300
250
200
150

o
=1
=3

500

@ B
S oS
S oS

Throughput (requests/sec.)
8
S

Throughput (requests/sec.)

800
700
600
500
400
300

Throughput (requests/sec.)

100 o f| 200
o ks b wame o 7 flexse
0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200 250 300
Request Concurrency Request Concurrency Request Concurrency
(a) 1 Core (b) 2 Cores (c) 4 Cores
Figure 14: Comparison of MySQL throughput of Linux/NPTL and FlexSC executing on 1, 2 and 4 cores.
MySQL User Kernel
Setup IPC [L3] L2 [d-cache [i-cache [TLB [Branch [IPC | L3 | L2 d-cache [i-cache [TLB [Branch
sync (1 core) 112 | 0.6 | 21.1 34.8 242 | 3.8 7.8 1033|165 | 1252 209.6 | 1849 | 3.9 17.4
flexsc (1 core) | 1.10 | 0.8 | 19.6 36.3 236 | 5.4 69]045|232| 55.1 131.9 86.5| 3.7 13.6
sync (4 cores) | 0.55 | 3.7 | 15.8 25.2 189 3.1 591036 | 166 | 78.0 1470 | 1200| 3.6 15.7
flexsc (4 cores) | 0.72 | 2.7 | 16.7 30.6 209 | 4.1 6.5|045| 184 | 46.6 104.4 63.5| 25 11.5

Table 5: Micro-architectural breakdown of MySQL execution on uni- and quad-core setups. All values shown, except for IPC, are
normalized using misses per kilo-instruction (MPKI): therefore, lower numbers yield more efficient execution and higher IPC.

M sync
600 M flexsc

Latency (ms)

1 core 2 cores 4 cores

Figure 15: Comparison of MySQL latency of Linux/NPTL and
FlexSC executing on 1, 2 and 4 cores, with 256 concurrent re-
quests.

50000
45000
40000
35000
30000
25000
20000
15000

10000 g ‘@4 cores

5000 =1 core

Throughput (requests/sec.)

0 100 200 300 400 500 600
Number of syscall entries (per core)

Figure 16: Execution of Apache on FlexSC-Threads, showing
the performance sensitivity of FlexSC to different number of
syscall pages. Each syscall page contains 64 syscall entries.

(3 to 4 syscall pages), while quad-core execution starts
to plateau with 300 to 400 syscall entries (6 to 7 syscall
pages).

It is particularly interesting to compare Figure 16 with
figures 9 and 10. T