
Maya H a r ida s a n

Iqba l Mo ho med

D o ug Ter r y

C ha ndu Thekkath

L i Z ha ng

MIC ROSOFT RESEARC H

S IL ICON VA L L EY

StarTrack Next Generation
A Scalable Infrastructure for Track-Based Applications

OSDI 2010

Location-Based Applications

• Many phones already have the ability to determine their
own location
 GPS, cell tower triangulation, or proximity to WiFi hotspots

• Many mobile applications use location information

Track

Time-ordered sequence of location readings

Latitude: 37.4013
Longitude: -122.0730
Time: 07/08/10 08:46:45.125

Application: Personalized Driving Directions

Goal: Find directions to new gym

Application: Personalized Driving Directions

Goal: Find directions to new gym

≈ Take US-101 North

A Taxonomy of Applications

Personal Social

Current
location

Driving directions,
Nearby restaurants

Friend finder,
Crowd scenes

Past
locations

Personal travel journal,
Geocoded photos

Post-it notes,
Recommendations

Tracks
Personalized Driving
Directions, Track-Based
Search

Ride sharing, Discovery,
Urban sensing

Class of applications enabled by StarTrack

StarTrack System

ST Client

Insertion Application

Location
Manager

• Retrieval
• Manipulation
• Comparison
 …

Application

ST Client

• Insertion
ST Server

ST Server

ST Server

http://www.google.com/imgres?imgurl=http://www.iconarchive.com/icons/icons-land/vista-hardware-devices/256/Computer-icon.png&imgrefurl=http://www.iconarchive.com/category/business/vista-hardware-devices-icons-by-icons-land.html&usg=__Ni7PshA-i9QGgAwmDI_3y4j0VPU=&h=256&w=256&sz=48&hl=en&start=6&zoom=1&um=1&itbs=1&tbnid=iU9O3OB53R_79M:&tbnh=111&tbnw=111&prev=/images?q=computer+icon&um=1&hl=en&sa=N&rls=com.microsoft:en-us:IE-SearchBox&tbs=isch:1
http://www.google.com/imgres?imgurl=http://www.iconarchive.com/icons/icons-land/vista-hardware-devices/256/Computer-icon.png&imgrefurl=http://www.iconarchive.com/category/business/vista-hardware-devices-icons-by-icons-land.html&usg=__Ni7PshA-i9QGgAwmDI_3y4j0VPU=&h=256&w=256&sz=48&hl=en&start=6&zoom=1&um=1&itbs=1&tbnid=iU9O3OB53R_79M:&tbnh=111&tbnw=111&prev=/images?q=computer+icon&um=1&hl=en&sa=N&rls=com.microsoft:en-us:IE-SearchBox&tbs=isch:1

System Challenges

1. Handling error-prone tracks

2. Flexible programming interface

3. Efficient implementation of operations on tracks

4. Scalability and fault tolerance

Challenges of Using Raw Tracks

Advantages of Canonicalization:
 More efficient retrieval and comparison operations

 Enables StarTrack to maintain a list of non-duplicate tracks

StarTrack API

Track Collections (TC): Abstract grouping of tracks

 Programming Convenience

 Implementation Efficiency

− Prevent unnecessary client-server message exchanges

− Enable delayed evaluation

− Enable caching and use of in-memory data structures

Pre-filter tracks Manipulate tracks Fetch tracks

StarTrack API: Track Collections

 TC JoinTrackCollections (TC tCs[], bool removeDuplicates)

 TC SortTracks (TC tC, SortAttribute attr)

 TC TakeTracks(TC tC, int count)

 TC GetSimilarTracks (TC tC, Track refTrack, float simThreshold)

 TC GetPassByTracks (TC tC, Area[] areas)

 TC GetCommonSegments(TC tC, float freqThreshold)

 Track[] GetTracks (TC tC, int start, int count)

Manipulation

Retrieval

Creation

 TC MakeCollection(GroupCriteria criteria, bool removeDuplicates)

API Usage: Ride-Sharing Application

// get user’s most popular track in the morning
TC myTC = MakeCollection(“name = Maya”, *0800 1000+, true);
TC myPopTC = SortTracks(myTC, FREQ);
Track track = GetTracks(myPopTC, 0, 1);

// find tracks of all fellow employees

TC msTC = MakeCollection(“name.Employer = MS”, *0800 1000+, true);

// pick tracks from the community most similar to user’s popular track

TC similarTC = GetSimilarTracks(msTC, track, 0.8);
Track[] similarTracks = GetTracks(similarTC, 0, 20);

// Find owners of tracks, and verify that each track is frequently traveled

User[] result = FindOwnersOfFrequentTracks(similarTracks);

API Usage: Ride-Sharing Application

// get user’s most popular track in the morning
TC myTC = MakeCollection(“name = Maya”, *0800 1000+, true);
TC myPopTC = SortTracks(myTC, FREQ);
Track track = GetTracks(myPopTC, 0, 1);

// find tracks of all fellow employees

TC msTC = MakeCollection(“name.Employer = MS”, *0800 1000+, true);

// pick tracks from the community most similar to user’s popular track

TC similarTC = GetSimilarTracks(msTC, track, 0.8);
Track[] similarTracks = GetTracks(similarTC, 0, 20);

// Find owners of tracks, and verify that each track is frequently traveled

User[] result = FindOwnersOfFrequentTracks(similarTracks);

Efficient Implementation of Operations

• StarTrack exploits redundancy in tracks for efficient
retrieval from database
 Set of non-duplicate tracks per user

 Separate table of unique coordinates

• StarTrack builds specialized in-memory data-structures
to accelerate the evaluation of some operations
 Quad-Trees for geographic range searches

 Track Trees for similarity searches

Track Similarity

Track A
Track B

s1

s2

s3

s4

s5

Track D

s8

s9

Track C

s6

s7 Track A = Track B = S1, S2, S3, S4, S5

Track C = S1, S2, S3, S4, S6, S7

Track D = S1, S2, S3, S8, S9

Track Similarity

Track A
Track B

s1

s2

s3

s4

s5

Track D

s8

s9

Track C

s6

s7

Limited database support for computing track similarity

SIM A,C =
|S1−4|

S1−4 + S5 + |S6−7|

SIM A,B =
|S1−5|

S1−5

Track A = Track B = S1, S2, S3, S4, S5

Track C = S1, S2, S3, S4, S6, S7

Track D = S1, S2, S3, S8, S9

= 1

Track Tree

Track A
Track B

s1

s2

s3

s4

s5

Track D

s8

s9

Track C

s6 s7

s1 s2 s3 s4 s5 s6 s7 s8 s9

S1-2 S6-7 S8-9

S1-3

S1-4

S1-5

Track Tree

Track A
Track B

s1

s2

s3

s4

s5

Track D

s8

s9

Track C

s6 s7

s1 s2 s3 s4 s5 s6 s7 s8 s9

S1-2 S6-7 S8-9

S1-3

S1-4

S1-5

GetSimilarTracks, GetCommonSegments

Evaluation

• Performance of our Track Tree approach

• Performance of 2 sample applications
 Personalized Driving Directions

 Ride-sharing

• Configuration
 Synthetically generated tracks

 Up to 9 StarTrack Servers + 3 Database Servers

 Server Configuration:

− 2.6 GHz AMD Opteron Quad-Core Processors

− 16 GB RAM

Evaluation: Track Tree

• Evaluation of GetSimilarTracks

• Alternative approaches:

 Database filtering

Pre-filter tracks that intersect ref track at database

 In-memory filtering

Pre-filter tracks that intersect ref track in memory

 In-memory brute force

Compute similarity between each track and ref track in
memory

Get Similar Tracks – Query Time

0.1

1

10

100

1000

10000

0 20 40 60 80 100

Q
u

e
ry

 T
im

e
(m

s)

Number of tracks (thousands)

Track Tree

In-Memory Filtering

In-Memory Brute Force

Database Filtering

Track Tree Construction Costs

0

25

50

75

100

125

150

0

40

80

120

160

200

0 20 40 60 80 100

Se
co

n
d

s

M
B

yt
es

Number of Tracks (thousands)

Time

Memory

Performance of Applications

Ride Sharing

- Track Collection on multiple users

- Calls to GetSimilarTracks

- 30 requests/s at about 170 ms

Personalized Driving Directions

- Track Collection for single user at a time

- Calls to GetCommonSegments

- 30 requests/s at about 100 ms (uncached)

- 250 requests/s at about 55 ms (cached)

0

100

200

300

400

500

600

0 10 20 30 40R
es

p
o

n
se

 T
im

e
(m

s)

Request Rate (per second)

0

20

40

60

80

100

120

150 175 200 225 250R
es

p
o

n
se

 T
im

e
(m

s)

Request Rate (per second)

Summary

• StarTrack is a scalable service designed to manage
tracks and facilitate the construction of track-based
applications

• Important Design Features
 Canonicalization of Tracks
 API based on Track Collections
 Use of Novel Data Structures

• Availability:
 We are looking for users of our infrastructure. Please contact

one of the authors if you are interested.

