Wb oy r‘i -‘_.]_ L "'-r_.

Converting the Ad-Hoc
Configuration of a Heterogeneous
Environment to a CFM

How I learned to stop worrying and love the Chef

Dimitri Aivaliotis

Every Ware Ltd

[:l'::!'\-“!-l'H =5 20M
"' B2 QR USENIX LISA 11: 25TH Lance Instavamion
‘b“ S'T}'li?.‘ .IE\r_'I.'r“N'S.TQ."‘.“:_"ri EC\ill'n_l
. (Hely X X VY

wrm iy UGPTIE o ERATION WITH LOFSA

In the beginning...

Chef

MOTD

= your CFM server 1s setup correctly

= your client machines are configured to talk to the
CEFM server

= communication works between your CFM server
and client machines

Engineer

o0

1011

a solut

2DGOGGLES.COM

MOTD Cookbook

cookbooks/motd/recipes/default.rb:

file "/etc/motd" do

content -

This system is managed by #{node[:company][:name]}.
All activity may be monitored and reported.

Authorized use only.

mode 0644

end

MOTD Cookbook

cookbooks/motd/recipes/default.rb:

template "/etc/motd" do
source "motd.erb"
owner ()
group 0
mode 0644

end

MOTD Cookbook

Ohai line:

<%= node[:kernel][:0s8] %> <%= node|:kernel]
[:release] %> (<%= node|:kernel][:1dent] %>) #<% =
node[:kernel][:version].split("#')[1].split(" ').first
0>

Engineer

o0

1011

a solut

2DGOGGLES.COM

System Cookbook

"Installs/Configures key/value system files"

"system::boot", "Sets boot parameters"

"system::logrotate"”, "Configures log rotation”
"system::make", "Provides parameters for building packages"
"system::periodic”, "Makes periodic job configuration”
"system::sysctl", "Tunes kernel parameters”

"system::syslog", "Sets-up system logging"

System Cookbook

cookbooks/system/templates/default/sysctl.conf.erb:

<% unless node[:system][:sysctl].class === nil -%>
<% node[:system][:sysctl].each do |k,vl -%>
<%=k Y%>=<%= v %>

<% end -%>

<% end -%>

System Cookbook

cookbooks/system/templates/freebsd/loader.cont.erb:

<% unless node[:system][:boot].class === nil -%>

<% node|:system][:boot].each do |k,vl -%>
<%=k %0>="<%= v %>"

<% end -%>

<% end -%>

MOTD Cookbook

TMTOWTDI

cookbooks/motd/templates/default/motd.erb:
<% 1f node[:platform]| == "freebsd" -%>

cookbooks/motd/templates/freebsd/motd.erb

Engineer

o0

1011

a solut

2DGOGGLES.COM

Base Role

name "base"

description "This 1s the base role."

override_attributes(
"motd" => {
"managed_by" => "EveryWare AG"
s

Base Role

"postiix" => {
"mail_type" => "client-base"
j
)

Base Role

run_ list(

"recipe[chef-client::delete_validation]",

"recipe[chef-client]",

"recipe[motd]",
"recipe[resolver]",

"recipe[ntp]",

"recipe[postiix]"

Engineer

o0

1011

a solut

2DGOGGLES.COM

lib/chef/provider/package/freebsd.rb

def load_current_resource

begin

@candidate_version = ports_candidate_version
rescue

@candidate version = file _candidate version

end

lib/chef/provider/package/freebsd.rb

def file_candidate_version
file_candidate_version_path.split(/-/).last.split(/.tbz/).first

end

lib/chef/provider/package/freebsd.rb

def file_candidate_version_path
Dir["#{ @new_resource.source }/
#{ @current_resource.package_name}*"][0].to_s

end

lib/chef/provider/package/freebsd.rb

def install_package(name, version)

when /MV/
shell_out!("pkg_add
#{file_candidate_version_path}", :env =>

{ "PKG_PATH" => @new_resource.source ,
'LC_ALL'=>nil}).status

lib/chef/provider/package/freebsd.rb

Chet::Log.debug("Current version 1s
#{ @current_resource.version}") if
@current_resource.version

Chet::Log.debug("Ports candidate version 1s
#{ @candidate_version}") if @candidate_version

Chet::Log.info("Installed package
#{ @new_resource.name } from:
#{ @new_resource.source}")

Postfix Cookbook

if node[:postfix][:mail_type] == "client-base"
package "postfix-base" do
source "/usr/ports/packages/All"
action :1nstall
end

end

DC1 Role

override_attributes(

"resolver" => {

"nameservers" => ["X", "y"],

"'search" => "DC1"
I

DC1 Role

"system" => {
"syslog" => { "*.*" => "@syslogl" }
J
)

ogt =3 g4 3 100 + Ju Aar S mpd. pid"

FreeBSD Role

name "freebsd"

description "All FreeBSD servers should have this
role to configure system parameters."

default_attributes(

:system => {

FreeBSD Role
:boot => {
"kern.ipc.somaxconn" => "1024",
"kern.maxfiles" => "32768",
"kern.ipc.nmbclusters" => "65536",
"kern.ipc.semmni” => "256",
"kern.ipc.semmns" => "512",
"kern.ipc.semmnu" => "256",
"boot_multicons" => "YES",
"boot_serial" =>"YES",
"console" => "comconsole,vidconsole",

"comconsole_speed" => "115200"

b

FreeBSD Role

:logrotate => {

"/var/log/snmpd.log" =>"644 3 100 *JW
/var/run/snmpd.pi1d"

b

:make => {
"INSTALL_NODEBUG" => "yes"
I

FreeBSD Role

:periodic => {
"daily_clean_hoststat_enable" => "NO",
"daily_status_mail_rejects_enable" => "NO",
"daily_status_include_submit_mailq" => "NO",
"daily_submit_queuerun" => "NO",
"daily_clean_tmps_enable" => "YES",
"daily_clean_tmps_dirs" => "/tmp /var/tmp /usr/tmp",
"daily_clean_tmps_days" => "7",
"daily_status_disks_df_flags" => "-h -t ufs",
"daily_status_zfs_enable" => "YES",
"daily_status_gmirror_enable" => "YES",

"daily_status_ntpd_enable" => "YES"

s

FreeBSD Role

:sysctl => {
"net.inet6.1p6.auto_flowlabel" => "0",
"kern.ipc.somaxconn" => "1024",
"machdep.panic_on_nmi" => "0",
"kern.ipc.semmap" => "256",
"kern.ipc.shm_use_phys" =>"1",

"security.bsd.see_other_uids" => "0"

j

FreeBSD Role

run_ list(
"recipe[system]"”

)

Roles & Cookbooks

== FcaiveAues + Dovre 10/ - —

http://www.flickr.com/photos/library_of_congress/6442021039/

Workflow Integration

New servers get chef-client installed at bootstrap
Roles and recipes configured per node
Server update => tie into Chet

Configuration saved in Revision Control

Recap...

Any Questions?

d.n.a@acm.org

Thanks to Opscode for Chef and to Sydney Padua

for the Brunel images (http://2dgoggles.com)

mailto:d.n.a@acm.org
file:///home/aglarond/Documents/LISA11/talks/

Converting the Ad-Hoc
Configuration of a Heterogeneous
Environment to a CFM

How I learned to stop worrying and love the Chef

Dimitri Aivaliotis

Every Ware Ltd

L‘:H :I ADMINIS :
i b, Iy X X vV

In the beginning...

It all started many years ago, back when there were
only a handful of servers to manage.

As a lone admin, it was easy to develop a manual
system of configuring each server, changing it as |
learned more and our customers' needs changed.

Changes are propagated by doing the same thing
across that handful of servers.

(Does this describe anybody's current configuration
management system?)

As time goes on...

Eventually though, that number grows to the point
where you can't even hold it in two hands.

And multiple admins get added to the mix.

Then you've reached the point where you know that
things can't go on like this; that something has to
change.

Enter Chef, the configuration management system.

As a CFM, Chef can help you codify the manual
system that you developed and grew years ago.

But, it is a tool. A tool that can help you perform
certain tasks better and easier.

It will not solve all your problems. It will not fit exactly
into how you do things now.

But, Chef is Open Source. You can make it your own.

This is the story of how | used Chef to automate the
configuration of the diverse systems under my
care.

Where to begin?

Configuration management is such a huge topic and
there are so many solutions to this problem, that
you just have to dive in and start using it.

Back at LISA '09, | attended the Configuration
Management Workshop.

(How many of you attended it this year?)

One of the organizers, Cory, gave us some practical
advice. He said to start with the Message of the
Day.

MOTD

= your CFM server is setup correctly

= your client machines are configured to talk to the
CFM server

= communication works between your CFM server
and client machines

If you've got the MOTD file under control of a CFM,
then you know that you have some basic
requirements fulfilled:

you know that...

So, | thought "great, now | just need to get the motd
cookbook and configure it". Except, there was no
motd cookbook...

What do you do when faced with a situation like this?
You want to use something that doesn't exist.

Engineer
a solution!

make it your own

MOTD Cookbook

cookbooks/motd/recipes/default.rb:

file "/etc/motd" do

content -

mode 0644

end

Of course, | first implemented the MOTD cookbook
for FreeBSD systems, as most of the systems |
manage are FreeBSD.

This presented some challenges because the default
MOTD under FreeBSD has a line showing the
running kernel, which is changed at boot, if needed.

This originally led to my /etc/motd being overwritten
at boot, then overwritten again by Chef; to be
repeated at each boot.

So, | needed a way to keep the file from constantly
being changed.

MOTD Cookbook

cookbooks/motd/recipes/default.rb:

template "/etc/motd" do
source "motd.erb"
owner 0
group 0
mode 0644

end

| exchanged the “file” resource for a "template”
resource, which made the recipe much cleaner.

But also enabled me to satisfy FreeBSD's default
behavior.

MOTD Cookbook

Ohai line:

<%= node|[:kernel][:08] %> <%= node][:kernel]
[:release] %> (<%= node|:kernel][:1dent] %>) #<%=
node[:kernel][:version].split(‘#")[1].split(" ').first
90>

| added a line to the template file, which referenced
the requisite kernel information from Ohai.

This satisfied both the boot process and my
cookbook, so | walked away happy.

My first cookbook, and it works!

What next?

Well, we've got a working CFM system and a system
file managed under it. What other things could |
use it for?

There are a few files with multiple non-mutually-
exclusive parameters that can be set in them.

Under FreeBSD, you've got /boot/loader.cont,
/etc/syslog.conf, /etc/newsyslog.conf,
/etc/make.conf, and /etc/periodic.conf, and
additionally you've got /etc/sysctl.conf under Linux
as well.

There was no cookbook to manage all these files
together, so what do we do?

Engineer
a solution!

make it your own

System Cookbook

"Installs/Configures key/value system files"

"system::boot", "Sets boot parameters"

"system::logrotate", "Configures log rotation"
"system::make", "Provides parameters for building packages"
"system::periodic”, "Makes periodic job configuration"
"system::sysctl", "Tunes kernel parameters"

"n o on

"system::syslog", "Sets-up system logging"

So, | wrote another cookbook to manage all these
system files.

The aptly-named "system” cookbook has at its heart
an assortment of key/value templates. This is due
to FreeBSD's adherence to the true UNIX spirit of
configuration files.

System Cookbook

cookbooks/system/templates/default/sysctl.conf.erb:

<% unless node|:system][:sysctl].class === nil -%>
<% node[:system][:sysctl].each do |k,vl -%>
<%=k %>=<%= v %>

<% end -%>

<% end -%>

This works for Linux, too. So, we can put the
/etc/sysctl.conf template under the "default”
directory.

System Cookbook

cookbooks/system/templates/freebsd/loader.conf.erb:

<% unless node|:system][:boot].class === nil -%>
<% node[:system][:boot].each do Ik,vl -%>
<%=k Y%>="<%= v %>"

<% end -%>

<% end -%>

Can you spot the difference?

This is why we used a separate template file for
/boot/loader.conf.

We placed this template under the "freebsd” directory
because of what Chef refers to as "file specificity”.

Now, what does this mean?

Those of you familiar with cfengine will know this as
"Single Copy Nirvana”.

This means that the more specific a change to a
template file needs to be, it gets placed into a
directory matching that level of specificity.

(lllustrate difference between these slides again.)

MOTD Cookbook

TMTOWTDI

cookbooks/motd/templates/default/motd.erb:
<% if node[:platform] == "freebsd" -%>

cookbooks/motd/templates/freebsd/motd.erb

Remember our MOTD cookbook?

Now, we can go back and make the implementation
more elegant.

Instead of an "if” clause, we can use file specificity.

= working CFM
= MOTD

= ”system” cookbook

OK, what have we got so far?
We have a...

We've seen the template files for these, but how do
the key/value pairs actually get substituted in?

We...

Engineer
a solution!

make it your own

= FreeBSD

= Solaris

= Linux
= Base

= DC1/DC2

We're going to do that by using “roles”.

Now, roles can be used for many things. At its most
basic, a role is nothing more than a label:

- these systems are FreeBSD

- these are Solaris

- and these over here are running Linux

- this is a base set of values that all systems should
start out with

- and these are located in Datacenter 1, those in
Datacenter 2

Let's look at these roles more in-depth.

Base Role

name "base"

description "This is the base role."

override_attributes(
"motd" => {
"managed_by" => "EveryWare AG"
h.

Base Role

"postfix" => {
"mail_type" => "client-base"

}

Base Role

run_list(
"recipe[chef-client::delete_validation]",
"recipe[chef-client]",
"recipe[motd]",
"recipe[resolver]",
"recipe[ntp]",

"recipe[postfix]"

Oh, but wait...
Our base role calls for the postfix default recipe to be
run. But, that involves installing postfix.

Chef tries to install it, but can't find the ports directory
for postfix because our new installs only install the
minimal distribution set.

What to do, what to do?

Engineer
a solution!

make it your own

lib/chef/provider/package/freebsd.rb

def load_current_resource

begin

@candidate_version = ports_candidate_version
rescue

@candidate _version = file_candidate version

end

That's right. Chef's OpenSource, so we can do more
than just write our own cookbooks. We can make
changes to the core itself.

In this case, we offer an alternative to installing a
package via ports.

lib/chef/provider/package/freebsd.rb

def file _candidate version
file_candidate_version_path.split(/-/).l1ast.split(/.tbz/).first

end

lib/chef/provider/package/freebsd.rb

def file_candidate_version_path
Dir["#{ @new_resource.source }/
#{ @current_resource.package_name }*"|[0].to_s

end

lib/chef/provider/package/freebsd.rb

def install_package(name, version)

when /AV/
shell_out!("pkg_add
#{file_candidate_version_path}", :env =>

{ "PKG_PATH" => @new_resource.source ,
'LC_ALL'=>nil}).status

lib/chef/provider/package/freebsd.rb

Chef::Log.debug("Current version is
#{ @current_resource.version}") if
@current_resource.version

Chef::Log.debug("Ports candidate version is
#{ @candidate_version}") if @candidate_version

Chef::Log.info("Installed package
#{ @new_resource.name} from:
#{ @new_resource.source}")

and, of course, logging all over the place

Postfix Cookbook

if node|:postfix][:mail_type] == "client-base"
package "postfix-base" do
source "/usr/ports/packages/All"
action :install
end

end

Base Role

run_list(

"recipe[postfix]"

)

Now, that we have postfix installed, we can go back
to our other roles and see what they do.

DC1 Role

override_attributes(

"resolver" => {
"nameservers" => ["x", "y"],

"search" => "DCI1"
i

DC1 Role

”ntp” :> {
"servers" => ["ntpl","ntp2"]

I

DC1 Role

"postfix" => {
"relayhost" => "relay1"

I

DC1 Role

"system" => {
"syslog" => { "*.*" => "@syslogl" }

}

DC1 Role

run_list(
"role[base]"

)

What is that?

It's pretty, but you can't read it.
| just like the way my editor highlights it. :)

Sometimes you need to have some sort of alterior
motive for getting things done. Me, I like nicely-

formatted code. It just looks nice, and that
motivates me.

FreeBSD Role

name "freebsd"

description "All FreeBSD servers should have this
role to configure system parameters."

default_attributes(

:system => {

FreeBSD Role

:boot => {
"kern.ipc.somaxconn" => "1024",
"kern.maxfiles" => "32768",
"kern.ipc.nmbclusters" => "65536",
"kern.ipc.semmni" => "256",
"kern.ipc.semmns" => "512",
"kern.ipc.semmnu" => "256",
"boot_multicons" => "YES",
"boot_serial" => "YES",

"console" => "comconsole,vidconsole",

"comconsole_speed" =>"115200"

b

FreeBSD Role

:logrotate => {

"/var/log/snmpd.log" =>"644 3 100 *JW
/var/run/snmpd.pid"

b

:make => {
"INSTALL_NODEBUG" => "yes"
li.

FreeBSD Role

:periodic => {

"daily_clean_hoststat_enable" => "NO",
"daily_status_mail_rejects_enable" => "NO",
"daily_status_include_submit_mailq" => "NO",
"daily_submit_queuerun" => "NO",
"daily_clean_tmps_enable" => "YES",
"daily_clean_tmps_dirs" => "/tmp /var/tmp /usr/tmp",
"daily_clean_tmps_days" =>"7",
"daily_status_disks_df_flags" =>"-h -t ufs",
"daily_status_zfs_enable" => "YES",
"daily_status_gmirror_enable" => "YES",

"daily_status_ntpd_enable" => "YES"

i

FreeBSD Role

:sysctl => {
"net.inet6.ip6.auto_flowlabel" => "0",
"kern.ipc.somaxconn" => "1024",
"machdep.panic_on_nmi" =>"0",
"kern.ipc.semmap" => "256",
"kern.ipc.shm_use_phys" =>"1",

"security.bsd.see_other_uids" => "0"

FreeBSD Role

run_list(
"recipe[system]"

)

Roles & Cookbooks

http://www flickr.com/photos/library_of_congress/6442021039/

So remember why we created our roles?

It was so that we could place the values required by
our cookbooks in a central location.

They go hand-in-hand to describe the state we'd like
our systems to be In.

Workflow Integration

New servers get chef-client installed at bootstrap
Roles and recipes configured per node
Server update => tie into Chef

Configuration saved in Revision Control

So, now that we have a working system, we need to
integrate it into our current workflow.

So...

We started with a whole bunch of different systems,
managed by hand by multiple admins. (Great
Scott!)

Then we were able to use Chef, cooked up a few
recipes, codified our sysadmin practises, and
adapted where needed.

Such that we could stop worrying and love the Chef.

Any Questions?

d.n.a@acm.org

Thanks to Opscode for Chef and to Sydney Padua

for the Brunel images (http://2dgoggles.com)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46

