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Abstract
StarTrack was the first service designed to manage tracks
of GPS location coordinates obtained from mobile de-
vices and to facilitate the construction of track-based
applications. Our early attempts to build practical ap-
plications on StarTrack revealed substantial efficiency
and scalability problems, including frequent client-server
roundtrips, unnecessary data transfers, costly similar-
ity comparisons involving thousands of tracks, and poor
fault-tolerance. To remedy these limitations, we revised
the overall system architecture, API, and implementa-
tion. The API was extended to operate on collections
of tracks rather than individual tracks, delay query exe-
cution, and permit caching of query results. New data
structures, namely track trees, were introduced to speed
the common operation of searching for similar tracks.
Map matching algorithms were adopted to convert each
track into a more compact and canonical sequence of
road segments. And the underlying track database was
partitioned and replicated among multiple servers. Al-
together, these changes not only simplified the construc-
tion of track-based applications, which we confirmed by
building applications using our new API, but also re-
sulted in considerable performance gains. Measurements
of similarity queries, for example, show two to three or-
ders of magnitude improvement in query times.

1 Introduction

The easy availability of function-rich mobile devices has
fueled significant interest in the “mobile internet”, where
mobile devices access internet-based services and web
applications. Mobile devices that can determine their
own physical location are adding to this trend by facilitat-
ing the development of diverse location-based services.
In addition to individual coordinates, “tracks” — time-
ordered sequences of GPS locations recorded by mobile
devices — enable many location-oriented applications,

varying from personal applications such as trip plan-
ning and health monitoring, to social applications such
as ride-sharing and urban sensing.

StarTrack, introduced in an earlier paper, was the first
service designed to manage tracks from mobile devices
and to facilitate the construction of track-based applica-
tions [3]. That paper was primarily focussed on identi-
fying a rich class of interesting personal and social ap-
plications that exploited histories of tracks; not much
attention was paid to implementing the service at scale
or building applications. Indeed, the entire implementa-
tion relied heavily on the services of a single database
server with a thin software veneer providing an API.
No applications were built using this API. Our first at-
tempt to build realistic applications using this system re-
vealed many shortcomings: principally inadequate per-
formance, scalability, and fault-tolerance. Some of these,
e.g. fault-tolerance, arose out of inadequate system struc-
ture in the original implementation. But by far most of
the shortcomings arose out of a mismatch between the
API provided by the system and what was required by
applications. Specifically, several functions that were
necessary for applications were either missing in the API
or needed to be synthesized from lower-level primitives
of the API. This mismatch led to costly and unneces-
sary client-server communication and data transfer. In
addition to these deficiencies, our original system imple-
mented common operations inefficiently (e.g. track com-
parisons).

This paper describes how the design and implementa-
tion of StarTrack have evolved non-trivially to address
real-world issues of dealing with tracks. Our experi-
ence with track-based applications is admittedly limited.
We do not claim our API is universal or fundamental in
any sense; it will undoubtedly evolve as we encounter
new classes of applications that we have not anticipated.
Nonetheless, we believe our work and experience to date
will be beneficial to researchers and practitioners in this
rapidly growing field.



In general, we found managing and providing seman-
tically rich operations on tracks to be surprisingly dif-
ficult. Track queries are complex because they involve
geographic and similarity constraints, and a naive solu-
tion requiring expensive evaluation of these constraints
does not scale to real-world online demand.

The main insight we use in tackling the complexity
of tracks is to recognize that tracks tend to be repetitive.
Repetitiveness arises from two distinct sources. An indi-
vidual tends to follow substantially similar routes in his
day-to-day life. This intuition is supported scientifically
by a recent study in Science [23]. Second, the vast major-
ity of tracks are collected on roads and highways, again
leading to significant overlap in tracks even if they are
from different users.

This insight permeates all parts of our revamped Star-
Track infrastructure. We made several changes to our
system. In some cases, we needed new techniques and
data structures; in other cases, we used more established
techniques, but synthesized in novel ways, to support a
new class of track-based applications efficiently.

The changes to our system fall into four broad areas:

API Changes. All operations in our original API dealt
with individual tracks, often causing entire sets of tracks
to be moved repeatedly between the service and applica-
tions. StarTrack currently supports a “track collection”,
representing a set of tracks. Several functions in the API
now operate on and return results as track collections.
This change had several benefits. Apart from the obvi-
ous ease of programming, it afforded StarTrack opportu-
nities to optimize the performance of specific operations
through delayed and partial evaluation of these collec-
tions. Caching of both full and partial results also be-
came possible.

Changes in Track Representation. We quickly discov-
ered dealing with “raw” tracks by themselves to be in-
efficient. We now use a “canonical” representation for
tracks, where tracks are represented as a sequence of
points drawn from a fixed set, such as road intersections.
Canonicalization benefits many aspects of the system.
It reduces the computational costs of track comparison
while improving its accuracy. As a consequence of im-
proved accuracy, we are able to group a user’s similar
tracks more effectively and maintain a small set of repre-
sentative tracks that captures the essentials of a large set
of tracks. Many applications only need to operate on the
set of representative tracks, leading to significantly fewer
operations, better caching of data, and consequently, bet-
ter performance.

Changes to On-Disk and In-Memory Data Struc-
tures. The original StarTrack API was implemented as
a thin veneer on top of a geospatial database system.
While simplifying the implementation, this resulted in

poor performance for many operators. The changes in
the API and canonicalization described above allowed
us to build specialized in-memory data structures to aug-
ment the database tables. Operations that had low per-
formance are now optimized by using in-memory quad-
trees or a novel structure called a track tree described in
Section 3.3. In addition to these in-memory data struc-
tures, we reorganized the database layout to include a
table of representative tracks for each user (as mentioned
above) and other tables that aid in handling operations
with geographical constraints.

Structural Changes. Our original prototype consisted
of a single server process that stored tracks in a central-
ized database and implemented an API to access these
tracks. This single server implementation clearly did
not scale to a large number of tracks or provide fault-
tolerance. In the new system, a set of StarTrack server
machines connects to another set of database servers.
Applications use a StarTrack clerk, which implements
the API and makes remote procedure calls (RPCs) to the
StarTrack servers as necessary. It also deals with retrying
requests on server failures, and balances RPC requests
amongst servers.

We detail our changes further in the rest of the paper
(Sections 2–4), describe two scalable, robust, and effi-
cient applications they enabled us to build (Section 5)
and summarize their performance impact (Section 6).

2 Application Programming Interface

The interface exported by the StarTrack service has
undergone multiple revisions based on our experience
building realistic applications. This section describes the
key elements of the new application programming inter-
face; space restrictions prevent us from describing the
complete API.

2.1 Track Collections
The new StarTrack interface supports the notion of a
track collection, an abstract grouping of tracks, where
the application supplies the criteria for grouping. Track
collections can, in turn, participate in other StarTrack op-
erations. All non-trivial operations in the StarTrack API
take a track collection as an argument.

Track collections have two significant advantages:

Implementation Efficiency. They allow the server to
treat the set of tracks that are repeatedly accessed to-
gether as a single entity for the purposes of caching.
They also allow the server to construct specialized data
structures that operate exclusively on these tracks, mak-
ing these operations more efficient. Furthermore, by hav-
ing applications and the service refer to a potentially



large collection of track identifiers by a single identifier,
we reduce the communication costs of transmitting the
identities of individual tracks between them.

Programming Convenience. Applications often want
to constrain operations to tracks that belong to a particu-
lar community or cohort. For example, a social applica-
tion might wish to operate on the tracks of a user and his
group of friends. Track collections allow such an appli-
cation to create an aggregation of the tracks in which it is
interested and enable it to operate on such groups more
conveniently.

Track collections are created by using the MakeCol-
lection procedure (see API Fragment 2.1). MakeCollec-
tion takes as its first argument a set of criteria to select
a group of tracks from all tracks in the system. Individ-
ual criteria can be composed out of three elements: ge-
ographic, time, user. The first two elements have fairly
simple semantics: a geographic element is specified by a
physical geographical region and a time element is spec-
ified by a time interval. The user element consists of two
subfields: a unique identifier that specifies the user and a
string field that specifies an XPATH query. The query is
applied to the user metadata that is stored in the track by
the application.

TrackCollxn MakeCollection(GrpCriteria[] gCrit,
bool unique);

API fragment 2.1: Operation to create a track collec-
tion.

The second argument is a boolean that indicates
whether the system should return only “unique” tracks.
Two canonical tracks are considered unique if their start-
ing points (as well as ending points) are “close” to each
other, and their paths are highly “similar” to each other.
Similarity is more precisely defined below when we dis-
cuss the GetSimilarTracks function. Parameters that de-
cide if the start/end points are “close” to one another and
if tracks are highly similar are defined by the infrastruc-
ture. These are described further in Section 4.1.

We provide applications the option to specify the
unique flag for two reasons. People tend to travel the
same routes habitually, leading to multiple highly similar
tracks that only differ in time. Meanwhile, many applica-
tions are only interested in distinct routes without requir-
ing knowledge of the precise times at which the route was
traveled. These applications greatly benefit from using
MakeCollection with the unique flag set to true since it
significantly reduces the number of tracks in the returned
collection. If instead an application needs per track infor-
mation, for instance, if it needs to know how fast the user
travels on a particular road segment, setting unique to

false will retrieve all the relevant tracks with detailed in-
formation.

Two simple code segments calling MakeCollection are
shown in Examples 2.1 and 2.2. The first example col-
lects the tracks of user Uriah between 8AM and 10AM.
The second shows how metadata information is used to
create a track collection of all employees of an organiza-
tion.

Example 2.1 Uriah’s tracks between 8AM and 10AM.

GrpCriteria[] gCrit = new GrpCriteria[2];
UserCriteria uc = new UserCriteria();
uc.Username = "Uriah";
TimeCriteria tc = new TimeCriteria();
tc.StartHour = 8; tc.EndHour = 10;
gCrit[0] = uc; gCrit[1] = tc;
TrackCollxn tcUriah;
tcUriah = MakeCollection(gCrit, false);

Example 2.2 Tracks of all employees of the Wickfield
corporation. The metadata string is an XPATH query,
shown here in simplified syntax for formatting reasons.

GrpCriteria[] gCrit = new GrpCriteria[1];
UserCriteria uc = new UserCriteria();
uc.metadata = ‘‘Employer = Wickfield’’;
gCrit[0] = uc;
TrackCollxn tcWField;
tcWField = MakeCollection(gCrit, true);

2.2 Manipulating Tracks
Tracks can be manipulated in several ways; we describe
a few representative operations. We have chosen these
because they embody the most significant changes we
made to the original prototype. Other operations are es-
sentially unchanged from our previous API.

JoinTrkCollections takes two or more track collections
and creates a new track collection that is the union of all
the constituent tracks. The second argument allows the
resulting track collection to retain only unique tracks.
SortTracks takes a track collection and orders the con-
stituent tracks in the collection according to one of a set
of predefined attributes. Examples of attributes we have
implemented are LENGTH and FREQ, which refer to the
length of the track and its frequency of occurrence within
that track collection.

Many track-based applications need to determine
whether tracks are similar to one another. Given two
tracks, we define track similarity as the ratio of the length
of all the segments that are common to both of them di-
vided by the length of the union of all segments present
in either of them (Figure 1(a)). GetSimilarTracks is given
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Figure 1: (a) the similarity between tracks A and B is 1
and between A and D is (l1 + l2 + l3)/(l1 + l2 + l3 +
l4+ l5+ l8+ l9), where li is the length of segment si; (b)
A,B,C are the tracks that pass by the areas R1 and R2;
(c) S is the common segment of A,B,C,D with frequency
threshold set to 0.6.

a track collection and a reference track and selects from
within the collection all tracks that are similar to the ref-
erence track. The returned track collection is sorted by
similarity. The degree of similarity is controlled by the
third parameter.

Track-based applications can find tracks that pass
within close proximity of a location by calling GetPass-
ByTracks. GetPassByTracks is given a track collection
and an array of Area objects and returns all tracks in the
collection that pass through all the areas (Figure 1(b)).

GetCommonSegments takes a track collection and a
frequency threshold and returns the road segments shared
by at least that fraction of the tracks in the collection.
These road segments are merged into the smallest num-
ber of contiguous routes possible (see Figure 1(c)). This
operation is useful for the application to retrieve a suc-
cinct summary of a potentially large set of tracks.

Tracks within a TrackCollxn object can be re-
trieved via the following two functions (See API Frag-
ment 2.3). GetTrackCount returns the number of tracks
in a track collection, and GetTracks returns count
tracks beginning at the start location within a track
collection.

3 StarTrack Server Design

This section describes three changes to the StarTrack
server design that we consider most significant.

3.1 Canonicalization of Tracks
In our first implementation, we stored users’ latitude and
longitude coordinates directly in the system. While this
design choice was intuitive and useful in some circum-
stances, it was problematic in many others. Recall that

TrackCollxn JoinTrkCollections(TrkCollxn tCs[],
bool unique);

TrackCollxn SortTracks(TrkCollxn tC,
SortAttribute attr);

TrackCollxn GetSimilarTracks(TrkCollxn tC,
Trk refTrk, float simThresh);

TrackCollxn GetPassByTracks(TrkCollxn tC,
Area[] areas);

TrackCollxn GetCommonSegments(TrkCollxn tC,
float freqThresh);

API fragment 2.2: Operations to manipulate a track col-
lection.

int GetTrackCount(TrkCollxn tC);
Track[] GetTracks(TrkCollxn tC, int start,

int count);

API fragment 2.3: Retrieval operations on a track col-
lection.

coordinates are samples of a path taken by a user. The
same path taken by different users may be sampled at
different points. Also, sampling is inherently error-prone
due to limitations in current localization techniques [8].
For these reasons, two identical paths can lead to widely
different sampled coordinates, making it difficult to clas-
sify them as equal. In the new system, we “canonical-
ize” paths to eliminate spurious variability in the sam-
pled coordinates. In this context, canonicalization means
that we convert a path to another path that only passes
through a set of “standard” points drawn from a (large)
fixed set. We refer to the portion of the path between two
such points as a segment.

There are several methods to canonicalize tracks. One
intuitive way is to overlay a fixed grid on the geographic
region and to map each coordinate to a grid intersection
point. A variation on this technique is to pick a suitably
weighted interior point within the grid instead of a cor-
ner.

A fundamental shortcoming of approaches based on a
fixed grid is that the grid is artificially created and does
not adapt to users’ tracks. Grids may be too fine-grained,
in which case canonicalization provides no benefits, or
too coarse-grained, in which case important features of
tracks are lost.

Instead of using an artificial grid, we can often use the
more natural and adaptive grid imposed by streets and
highways. Canonicalizing based on street maps is called
map matching and is desirable in cases where roadmaps
of the region exist. A track after canonicalization is
mapped to a path in the roadmap. A path consists of
one or more street segments and is stored as a sequence



of the endpoints of the segment(s). StarTrack uses a
map matching approach using hidden Markov models
designed by Krumm et al. [17, 20].

The performance of canonicalization is dependent on
three factors: the sampling rate of a track (i.e., the num-
ber of GPS points in the track), the length of the track,
and the amount of GPS noise introduced into the sam-
ples. In our system, canonicalization is done offline as a
pre-processing step. Since the performance of canonical-
ization is not that critical in our system, we do not present
detailed results. With some performance tuning, Star-
Track can canonicalize a track with average trip length
of about 20 km and 400 GPS samples in under 250 ms.

Canonicalization has two key advantages that translate
into performance savings. First, StarTrack can compare
two segments for equality without using expensive geo-
graphic constraints. Equality of segments is used within
the inner loop of the procedure that finds similar tracks,
which in turn is a very common operation in applications.
Second, canonicalization tends to create larger numbers
of identical segments. This often allows us to access and
manipulate a single representative segment rather than
dealing with individual segments. It also allows Star-
Track to identify duplicate tracks more accurately and
reduces the number of tracks it needs to process for var-
ious operations.

Canonicalization based on road networks is appropri-
ate for regions that have a mature road network and a sta-
ble map. When road networks are not available, we may
utilize technologies for constructing road maps from user
tracks [5, 7].

3.2 Delayed Evaluation
We found that applications typically make several API
calls to narrow down the set of tracks they want to re-
trieve. Our implementation of the API therefore delays
the evaluation of the tracks in a track collection until
one of the two retrieval functions in API Fragment 2.3
is called. This technique saves multiple roundtrips be-
tween the StarTrack clerk and servers. Furthermore, it
allows the StarTrack server flexibility in the queries it is-
sues to the database and in the choice of data structures
it builds for different retrieval operations.

When a client invokes a MakeCollection operation, the
client-side stub marshals an efficient description of the
call arguments and a small integer representing the pro-
cedure name. We call the resulting structure a descriptor.
The stub sends the descriptor to the server, which stamps
it with the current time to capture the database contents at
that instant and returns it.† We require that the timestamp
be in the past with respect to the time on the database

†There are well-known ways to avoid this RPC call, but we have
chosen not to implement them for simplicity.

server. Assuming that tracks are not deleted from the sys-
tem, this guarantees that multiple evaluations of a track
collection will always return the same set of tracks.

Operations such as JoinTrkCollections, GetPopular-
Tracks, GetSimilarTracks, and GetPassByTracks create
compositions of these descriptors (at the client stub) with
no communication to the server and no additional times-
tamps. We refer to these compositions as compound de-
scriptors. These are organized as a tree, with the leaves
being a simple timestamped descriptor.

Notice that all descriptors (compound or otherwise)
contain information about the invoked function and the
arguments, which together can be used to construct a
track collection. In this sense they can be viewed as a
closure [18] or as a specialized form of a logical view
from the database literature [9].

Our use of timestamped descriptors is a tradeoff be-
tween efficiency and freshness. Timestamps imply that
the application sees data as it existed in the database at a
particular point in time, not necessarily the latest data. It
allows the StarTrack server to cache the contents of the
database in an in-memory data structure, or discard it at
will and reevaluate it later, while providing easy to un-
derstand and consistent semantics to the application. It
also allows a client to present the descriptor to a differ-
ent StarTrack server if needed for load-balancing reasons
or if the original server crashes. Re-evaluating a descrip-
tor is guaranteed to yield the same result anywhere in the
system because the operations are deterministic, and the
timestamp acts as a snapshot of the database (provided
that tracks are not deleted from the system). If freshness
is more important for an application, it can recreate the
track collection as often as needed.

The evaluation of a descriptor yields different types
of in-memory data structures. For example, the evalua-
tion of a descriptor constructed by GetSimilarTracks may
(but need not) create a data structure called a track tree.
A descriptor created by GetPassByTracks can result in a
quad-tree [10]. The results of evaluating other descrip-
tors are typically stored as a simple set of tracks.

3.3 Track Tree

In our experience, when two tracks overlap, they usually
do so on one or very few contiguous segments. We ex-
ploit this property to build a hierarchical data structure
called a track tree, which is used to speed up the retrieval
of similar tracks.

Each road segment is represented as a leaf node in a
track tree. For each leaf node, the track tree records all
tracks that contain that particular segment. Once all the
segments in a track collection are stored as leaf nodes,
pairs of nodes that refer to geographically adjacent seg-
ments are considered for merging to form interior nodes
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Figure 2: The track tree of the set of four tracks shown
in Figure 1(a). Each node, except for leaf nodes, is anno-
tated with the set of tracks that contain it.

of the tree. Whenever there is choice of pairs of nodes to
merge, the pair that has the highest number of tracks in
common is picked. This process is continued iteratively
up the tree. When merging two nodes, all tracks belong-
ing to both children nodes are included in the parent node
as well. By this construction, each node in the track tree
represents a contiguous sequence of road segments. In
addition, the segment is more likely to be shared by mul-
tiple tracks.

Figure 2 shows the track tree for the sample four tracks
in Figure 1(a). As shown in Figure 1(a), tracks A and
B are identical and consist of segments S1, S2, S3, S4,
and S5. Tracks C and D share common segments with
A and B. Segments shared by larger numbers of tracks
are favored when merging nodes, which explains why
segments S1 to S3 are merged together, instead of other
combinations, such as S2 to S4. Using this tree, tracks
A and B can be described by one single node (S1-5),
and tracks C and D can be described by two nodes each:
Track C by S1-4 and S6-7 and Track D by S1-3 and S8-9.

Track trees are used to accelerate several API oper-
ations. In GetCommonSegments, after we identify the
road segments shared by sufficiently many tracks, as in-
dicated by the given threshold, we use a track tree to or-
ganize them into a small number of contiguous tracks.
This is done by merging up in the tree those nodes corre-
sponding to these road segments. Given the way a track
tree is constructed, this usually results in a small number
of nodes, corresponding to a small number of contiguous
tracks.

Another API operation enabled by a track tree is Get-
SimilarTracks. Implementing this function as a database
operation is inefficient because there is little match be-
tween our similarity semantics and the primitives sup-
ported by spatial databases.

With a track tree, StarTrack can quickly find a set of
tracks with a given degree of similarity to a specific track
T (See Code Segment 3.1). First, StarTrack identifies
the set of all nodes (interior and leaf) covered by T. In
order to do this, T is initially broken into smaller seg-

ments. StarTrack then identifies the leaf nodes in the
track tree that correspond to these segments. Next, it
identifies pairs of adjacent nodes that have a common
parent node, includes the parent into the set, and iterates
until no such parent exists. These steps are encapsulated
in the function Map.

The GetSimilarTracks operator then sorts the nodes in
T by decreasing order of length. It sequentially scans
each node, examining the set of tracks containing it, and
outputs tracks that are at least simThresh similar to
the query track. This process stops when it has found
sufficiently many tracks as defined by the maxCount
parameter, or when it has examined sufficiently many
tracks. Recall that the client supplies the simThresh
parameter (as part of the GetSimilarTracks call), as well
as the maxCount parameter (as part of the GetTracks
invocation, which triggers the evaluation of the descrip-
tor). This process will not produce any false positives
(i.e., tracks that purport to be similar but are not), but it
could miss some highly similar tracks. The percentage of
such misses is quite small when the similarity threshold
is reasonably high, as our experimental results show (see
Figure 7(c) in Section 6).

Code segment 3.1 Pseudo-code for implementing
GetSimilarTracks using tracktree.
Track[] GetSimilarTracks(TrackTree trackTree,
Track T, double simThresh, int maxCount)

{
TrackTreeNode[] nodes = trackTree.Map(T);

SortByDescLength(nodes);

SortedList<Track> results; int examined = 0;
foreach(node in nodes) {
foreach(candidate in node.tracks) {
if(T.Similarity(candidate)>=simThresh)

results.Add(candidate);
examined++;
if((results.Count>=maxCount)||

(examined>=6*maxCount))
return results;

}
}
return results;

}

Similar to other in-memory data structures in Star-
Track, a track tree is cached in memory until evicted
under the caching policy: LRU in our implementation.
Since track collections are immutable, we do not update
data structures during their life time. However, the track
tree structure allows for efficient insertion of new tracks,
and whenever a track collection is created by building
upon an existing track collection, an existing underlying
track tree may be copied and updated.



4 Storage Platform Design

As previously described, we build and maintain in-
memory data-structures at the StarTrack servers, and use
a different set of database servers to store data persis-
tently. StarTrack always checks if tracks can be found in
the in-memory data-structures before fetching them from
the database.

StarTrack uses Microsoft’s SQL Server 2008, which
supports the notion of geospatial objects as a funda-
mental data type. Data is partitioned across multiple
machines, and partitions are replicated using chained
declustering [12], which provides the necessary scaling
properties as well as automatic dynamic load-balancing
and fault-tolerance.

4.1 Database Tables
The principal on-disk data structure consists of 5 tables
stored in SQL Server.

User Table. This consists of a set of records for each
user containing a unique system-assigned user identifier
and other personal information.

Track Table. Every track is assigned a unique identi-
fier, consists of a set of time-stamped latitude and lon-
gitude coordinates, and is stored in a single row in the
table. Both the raw and the canonical versions of tracks
are stored in the same table.

Representative Track Table. This table maintains a set
of representative tracks per user and allows StarTrack to
often avoid searching the larger Track Table. Each record
stores information related to a single representative track:
the canonical coordinates, the owner, and a count of how
many actual instances of this representative track exist in
the Track Table. Upon insertion of a track into the Track
Table, StarTrack checks if there exists a representative
track that matches the new track. If so, the new track
is not inserted into the Representative Track Table, but
the count of the matching representative track is incre-
mented. The count serves as indication of the popularity
of a given representative track and is used by StarTrack
operations for ranking purposes.

Two tracks are considered as matching if their start
points are within 100 m of each other, if their end points
are within 100 m of each other, and if the tracks are at
least 90% similar. The choice of these parameters is fixed
by the infrastructure and cannot be changed by individual
applications. It is based on expected errors in GPS mea-
surements, as well as cost/benefit tradeoffs, and is not as
Procrustean as one might imagine. The values chosen
determine the size of the Representative Track table —
high start/end point buffer values and low track similar-
ity values result in a smaller table of unique tracks, but

applications may lose the ability to discriminate between
tracks. The size of the table, in turn, affects the speed of
many functions in the API that must access that table.

Coordinate Table. During the map matching process,
the set of coordinates in a path is drawn from a finite list
of points, which depends on the particulars of the map
data used for canonicalization of tracks. Each record in
this table maps a location identifier to a pair of coordi-
nates. This particular table is immutable, replicated on
each database server, and not partitioned.

Coordinate to Track Table. This table maps coordi-
nates to tracks that go through them. We use it to speed
up the location of tracks that pass through certain geo-
graphic boundaries.

StarTrack allows three types of criteria in fetching
tracks from the database: user, time, and geographic
region. Region-based queries may be performed by
leveraging the geospatial functions provided by modern
database systems, which support specialized indexing
schemes. Such systems must be used with care because
costs are still significant when indexing large numbers of
complex geospatial objects such as tracks.

In the original StarTrack implementation, we used the
geospatial primitives of the database to treat each track as
a separate object and created a geospatial index over all
such objects. Now, we maintain a geospatial index on
the Coordinate Table alone, thereby reducing the number
of objects on which the geospatial index is maintained.
We use this index to find all locations that match a given
geographic query. We then use the Coordinate To Track
Table to look up all tracks that go through these locations.
This is feasible precisely because of the canonicalization
pre-processing step.

The Coordinate Table and its geospatial index are
maintained by the database server and portions of them
may be cached in memory. We present a comparison
of the original and new approaches in Section 6.2 (Fig-
ure 3). If necessary we can further speed up our design
by not storing the Coordinate Table in the database server
and can instead store it in memory and index it using an
in-memory quad-tree.

4.2 Database Server Organization

The tables mentioned above are partitioned across multi-
ple database servers. Based on StarTrack’s search crite-
ria options, we considered two partitioning schemes: by
geography and by user identifier.

We decided not to partition by geography, since over
time it would lead to increasing numbers of tracks
that span geographic regions, therefore having to span
servers.



We opted for partitioning data by user identifier, keep-
ing all data referring to a single user in a single database
server. This organization allows user-constrained queries
to be sent to a single database server, while requiring ge-
ographic queries to be sent to all database servers.

Data is mirrored in the system. Each database server
acts as the primary for one partition of each table, and
as the mirror (or secondary) for its neighbors’ partitions.
A primary database server processes read and write re-
quests from clients, while a mirror server only handles
read requests.

StarTrack servers are clients of the database servers,
and evenly distribute reads amongst the replicas. When
a database server fails, the server that mirrors the parti-
tions on the failed server takes over as primary for the
partitions. The StarTrack servers direct write traffic to
the new servers and in addition, distribute the read re-
quests uniformly among all the replicas using chained
declustering, as described by others [12, 19].

5 Applications

We explored scenarios where a single user’s data can be
used to personalize her experience based on her habit-
ual tracks, for applications such as personalized adver-
tising, recommendation systems, and health monitoring.
On the other end of the spectrum, social applications,
where the set of tracks from a group of friends or even a
broader community are used, may help provide enhanced
services to users. Examples include those related to ur-
ban sensing, collaboration, discovery of new areas, and
shared experiences.

To illustrate the usefulness and evaluate the perfor-
mance of StarTrack services, we describe two of the ap-
plications we built.

While both applications were non-trivial to write, the
use of our API significantly simplified their construction.
In fact, the application logic in both examples is suc-
cinctly captured in a few code snippets. Our general ex-
perience is that StarTrack provides an intuitive, flexible,
and efficient way to program track-based applications.

5.1 Ride-Sharing Service
Ride-sharing has long held the promise of reducing en-
ergy consumption. Transit departments in many major
metropolitan areas now offer on-line ride-sharing ser-
vices or portals (see for example, King County Metro
Ride [15]). One challenge in building an effective ride-
sharing service is to discover ride-share partners who
travel on similar routes.

With StarTrack, these ride-matching services are eas-
ily built. The service can build a TrackCollection for
the employees of the same company or for a person’s

social network, or for a group of people who have sub-
scribed to a transit service. Code Segment 5.1 constructs
a track collection for a community of users. Code Seg-
ment 5.2 identifies potential ride-sharing partners based
on the similarity of their travel patterns.

Code segment 5.1 Set up a community’s regularly tra-
versed tracks where the community is defined through
supplied SearchCriteria.
TrackCollxn getCommunityTracks(SearchCriteria sc,

int count)
{

TrackCollxn tc = MakeCollection(sc, true);
return Take(SortTracks(tc, FREQ), count);

}

Code segment 5.2 Find ride-share candidates with sim-
ilar travel patterns. findOwners is a client-side func-
tion that takes a set of tracks and returns the list of users
who own them.
List getRideShareCandidates

(TrackCollxn communityTC, string username)
{

UserCriteria uc = new UserCriteria();
uc.Username = username;
TrackCollxn userTC =

MakeCollection(uc, true);
Track[] popularTracks =

GetTracks(SortTracks(userTC, FREQ),
0, 10);

List<TrackCollxn> similarTC;
foreach(Track track in popularTracks) {

TrackCollxn tc = GetSimilarTracks(
communityTC, track, 0.7);

similarTC.Add(tc);
}
Track[] similarTracks =

GetTracks(JoinTrackCollections(similarTC)
0, 100);

return findOwners(similarTracks);
}

Another usage scenario is when a user needs a ride
between two specific locations. This can be done easily
by calling GetPassbyTracks.

It is important to note that the ride-sharing service
based on StarTrack offers more flexibility than conven-
tional services. For instance, since a rider’s entire route
is known, rather than just his start and destination, it al-
lows the service more latitude in arranging pick-ups and
drop-offs along the route.

5.2 Personalized Driving Directions
Current navigation systems and online map services pro-
vide detailed turn-by-turn driving directions. Because



StarTrack knows what routes a person has taken in the
past, as well as how recently and how frequently, an ap-
plication could easily use StarTrack to provide personal-
ized driving directions.

For example, instead of providing detailed turn-by-
turn instructions on how to get to the freeway from the
person’s house, the directions might simply say “Get on
Highway 101 heading south” and then provide detailed
directions from that point.

Code segment 5.3 Construct a user’s familiar segments.
TrackCollxn getFamiliarSegments(string username)
{

UserCriteria uc = new UserCriteria();
uc.Username = username;
TrackCollxn uTC = MakeCollection(uc, true);
// Pick the 10 most frequently occurring
// tracks.
TrackCollxn pplrTC =

Take(SortTracks(uTC, FREQ), 10);
TrackCollxn familiarTC =

GetCommonSegments(pplrTC, 0.2);
return familiarTC;

}

The application we built uses the Bing Map service
and the StarTrack infrastructure. A user inputs start and
destination locations, and the application uses Bing to
get turn-by-turn directions for that route. Next, the appli-
cation uses StarTrack to obtain the set of “familiar seg-
ments” for that user, as shown in Code Segment 5.3.

Having obtained the familiar segments for the user, the
application identifies portions of the route returned by
Bing that overlap with the familiar segments and uses
the result to prepare personalized driving directions (we
omit further description of these steps given that they are
performed locally by the application and do not involve
calls to StarTrack).

6 Evaluation

This section evaluates the performance of the StarTrack
service. To study the system at scale, we used synthet-
ically generated tracks. We also ran experiments with
actual tracks collected by users of GPS-equipped mo-
bile devices, but omit the results since they are similar
to those performed with synthetic tracks, and given that
we only have a limited number of real tracks.

We focus on the costs of executing track operations
that involve (a) geographic constraints and (b) compar-
isons of tracks. These operations are the most difficult to
build efficiently, and are also among the most commonly
occurring in the track-based applications that we built.
We also report on the performance of two applications.

Our experiments were all conducted on 2.6 GHz AMD

Opteron quad-core processors with 16 GB memory, run-
ning Windows Server 2003.

6.1 Synthetic Tracks

We generated synthetic tracks based on the salient fea-
tures observed in a dataset of approximately 16,000 real
tracks followed by 252 users over 2-week periods in
Seattle, WA [16]. In our model, each person has fixed
locations for home and workplace, and a number of “er-
rand” locations that represent places they go less fre-
quently. On weekdays, a person travels between the
assigned home and work locations during the common
morning and evening commute hours. Sporadically on
weekdays and more often on weekends, a person carries
out a number of errands.

After choosing the start and end locations for each trip,
we calculate the shortest path as well as its duration be-
tween these points on a graph of road networks. We then
sample and perturb each path to simulate noise in the
sampling and localization of the data and treat the result-
ing points as a track.

Our early experiments indicated that some features of
tracks have a pronounced effect on performance while
others do not. Specifically, performance is affected by
the following:

• Number of tracks. The larger the number of tracks,
the greater the computational and storage overhead.

• Length of tracks. The number of points in a track
has an impact on performance. Assuming tracks are
canonicalized, the number of points is proportional
to the length of the tracks.

• Covered region. The region over which the tracks
are generated has an impact on track density (i.e.,
number of tracks that pass through a unit area). As
track density increases, the computational burden
imposed on our algorithms increases. For example,
the same geographic query returns more results and
therefore incurs more computational cost when the
density of tracks is higher.

We devised our model to allow us to control these key
features. Our belief is that, at least for the purpose of per-
formance evaluation, any model that allowed these fea-
tures of tracks to be varied would be adequate.

For our scalability experiments, we generated syn-
thetic tracks for a 3-month period and 18,000 users in
Santa Clara County. This resulted in a total of over 4.5
million tracks. On average, each track is 20 km long
and contains 400 GPS samples that yield on average 163
points after canonicalization.



6.2 Performance of Geographic Queries
One of StarTrack’s most important operations is query-
ing based on geographic constraints. Some of these op-
erations require a round-trip to the database server, while
others can be optimized by an in-memory cache. In our
API, geographic queries show up in two forms. First, in
MakeCollection an application can specify a geographic
region constraint. Second, GetPassByTracks allows an
application to select those tracks in a track collection
that pass within specific areas. The first query involves
retrieving tracks from a database, while the second in-
volves retrieving tracks from a pre-computed track col-
lection, which can be sped up in memory.

Geographic queries to the database. Although we do
not focus on studying the performance of the spatial fea-
tures of the database, we investigate how best to use them
to improve simple geographic queries used to pre-filter
tracks brought into memory.

We compared two ways to store tracks and construct
the necessary indices. In the first approach, used in
our original prototype, we treat each track as a sepa-
rate geospatial object and create a spatial index over all
tracks. This index is used to retrieve all the tracks inter-
secting the query region. The second approach, used by
StarTrack, involves the use of two additional tables, the
Coordinate Table and the Coordinate to Track Table, as
described in Section 4.1. In this approach, a spatial index
is built only on the Coordinate Table.
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Figure 3 presents the query time for both approaches
when we vary the area of the query region on a set of
100,000 tracks. It also shows the average number of
matched tracks on the secondary y-axis. Isolating the
need to execute geographic queries to a small set of dis-
tinct points through the use of the Coordinate Table leads
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to significant performance benefits. This enhancement is
only possible due to track canonicalization.

Geographic queries to in-memory data structure. Re-
call from Section 3.2 that the evaluation of a GetPass-
ByTracks operation triggers the construction of an in-
memory quad-tree, in the expectation that the data will be
repeatedly accessed in the future. Canonicalization tends
to lower the number of unique coordinates in tracks,
speeding up the construction time for quad-trees, as well
as the execution time of subsequent requests against it.
Figure 4 shows the cost of constructing a quad-tree.
Building the quad-tree itself requires little space and time
since the number of unique coordinates is small and lev-
els off when the tracks cover a large region. Both the
memory and time needed are linear in the number of
tracks, and are mostly spent on building an index from
coordinates to their containing tracks.

Figure 5 presents the time to query a quad-tree with
varying numbers of tracks and region sizes. In all cases,
the query time is very low. For example, it takes about 1
ms for a region with a 5 km radius on 100,000 tracks. The
query time is fairly insensitive to the number of tracks
because the structure of the quad-tree is determined by
the unique coordinates. On the other hand, the size of
the query region affects the times since it determines the
number of quad-tree cells to be visited.

6.3 Performance of Track Comparisons
A common query in track based applications is to retrieve
tracks based on similarity. Typically, an application has
a track collection and a “query” track and needs to find
tracks in the set that are most similar to the query track.

We compare the performance of our technique us-
ing a track tree to three alternative methods for ranking
tracks based on similarity: (1) Bruteforce: The brute-
force method compares the query track against every
track in the collection and returns those with similarity
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Figure 5: Time to query a quad-tree. (a) Query time for
different numbers of tracks when size of the region is
fixed to 1 and 5 km, respectively. (b) Query time for 50K
and 100K tracks as the size of region is varied.

above a given threshold. For the bruteforce method, we
assume all tracks are already in memory. (2) In-memory
filtering: This method constructs an in-memory dictio-
nary used to quickly look up tracks that contain any given
point. For a given query track, we use this dictionary to
identify all tracks that intersect it, after which we com-
pute the similarity of each intersecting track to the query
track, returning those above the threshold. (3) Database
filtering: We store the set of tracks in the database, use a
query to retrieve all tracks in the database that intersect
the query track, and compute the similarity against the
retrieved tracks.

We ran experiments with different numbers of tracks
and queries with varying similarity thresholds.

Figure 6 shows the query time when using the vari-
ous methods. The query time with the track tree method
is dependent on the similarity threshold, unlike with the
other three alternatives. In Figure 6, we present results
for the track tree approach when the similarity threshold
is 0.7 and 0.9. The experiments show that track trees lead
to significantly more efficient queries when compared to
the bruteforce method, achieving two to three orders of
magnitude speedups. Although the in-memory filtering

method performs better than the bruteforce method, it is
still significantly slower while consuming high amounts
of resources for constructing and storing the in-memory
dictionary. The database filtering method presented the
worst performance.
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There is a cost associated with constructing a track tree
that is at the heart of our technique. Figure 7(a) shows
the memory usage and the time for constructing a track
tree as a function of the number of tracks in the collec-
tion. Constructing a track tree takes linear space and
slightly super-linear time as the height of the track tree
grows logarithmically with the number of tracks. There
is a tradeoff for using a track tree— it takes time to con-
struct it, but once constructed, it leads to significantly
optimized queries. From Figures 7(a) and 6, we cal-
culate the “break-even” point, or the minimum number
of queries such that the amortized query time using a
track tree is lower than the query time of the bruteforce
method. These break-even numbers are shown in Fig-
ure 7(b). As observed, the numbers grow slowly with the
number of tracks, and are fairly small: below 80 for a
track collection with up to 100,000 tracks.

One potential downside of the track tree approach is
that while it is highly efficient at retrieving similar tracks
and although it will never return tracks that do not sat-
isfy the similarity threshold, it may not return all tracks
above the given similarity threshold. Figure 7(c) shows
the coverage of the track tree method. The graph shows
the percentage of the expected tracks returned when us-
ing a track tree. We can see that the coverage increases
for higher similarity thresholds. It returns over 90% of
the tracks when similarity is above 0.7. We believe this
is sufficient for typical applications, that are only inter-
ested in tracks with reasonably high similarity.
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6.4 Application Performance

We use the Ride-Sharing (RS) and Personalized Driving
Directions (PDD) applications, presented in Section 5,
to evaluate the overall performance of StarTrack. These
two applications illustrate two different usage scenarios:
RS creates a large track collection for repeated accesses
while PDD creates many small per-user track collections.

We fixed the number of database servers to three and
varied the number of StarTrack servers. To generate load
on the servers, we ran multiple instances of these appli-
cations from a number of client machines.

6.4.1 Single StarTrack Server Experiments

The RS application identifies potential ride-sharing part-
ners for a given user, and as presented in Code Seg-
ment 5.2, involves multiple calls to the StarTrack server.
In our evaluation, we built a track collection with 50,000
unique tracks from which the application searches for
similar tracks. We warmed up the server by construct-
ing a track tree on the large set of tracks before sending
it client requests. Figure 8(a) shows the response times
for RS under varying request rates. Despite the more
complex nature of the application, one StarTrack server
is capable of satisfying 30 requests per second with a re-
sponse rate of around 150 ms.

We ran experiments for the PDD application under two
different types of load. In the first case, queries simulate
users whose data has not been cached on the StarTrack
server prior to the query. In the second case, we preload
the cache with the in-memory data structures used to ex-
pedite the GetCommonSegments operation (familiarTC
in Code Segment 5.3) invoked by the application.

Figures 8(b) and (c) plot the response times with vary-
ing request rates under the two types of loads. When
the data is not cached, each server is capable of satisfy-
ing up to 30 requests per second without increasing the
response time. The average response time prior to satura-

tion is around 100 ms. The maximum server throughput
increases to 270 requests per second and the response
time falls to 60 ms when the data is previously cached on
the server.

6.4.2 Scalability Experiments

For both applications, individual requests sent by the
clients are entirely independent of one another. We tested
StarTrack’s scalability by running the PDD application
on multiple StarTrack servers. For this experiment we
used the non-cached version of PDD, with the goal of
exercising load on the database.

In Figure 9 we present the maximum throughput that
the system is able to achieve with a varying number of
StarTrack servers. As expected, the system scales lin-
early with the number of servers. Since PDD only re-
trieves a small number of tracks for each user, this exper-
iment did not saturate the database servers.

From these experiments, we estimate the resources
needed to satisfy a given number of users for our tested
applications. Three StarTrack servers can support a peak
load of around 120 requests per second (without caching)
or up to 780 (with caching). Without caching, this allows
over 5 million queries uniformly distributed over a period
of 12 hours, corresponding to an average of 5 queries per
user given a population of 1 million users requesting per-
sonalized driving directions.

In the case of ride-sharing, it’s desirable that track
trees are pre-built and kept in memory. In order to cre-
ate and cache a single or multiple track trees with each
user’s top 5 tracks, a ride-sharing application satisfying
1 million users would require approximately 10 GB of
memory. A single server holding all this data could allow
a peak load of 35 requests per second, or more servers
could be used if higher peak loads need to be handled.
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Figure 8: Response times for the RS and PDD applications under varying request rates. (a) RS application; (b) PDD
where users’ tracks are not cached; (c) PDD where users’ tracks are previously cached.
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7 Related Work

As mobile devices have become equipped with the abil-
ity to determine their own location, there has been an
emergence of applications that collect and utilize users’
location data. The research community has proposed
a number of useful location-based applications. Traffic
prediction [11, 24], ride-sharing [14], personalized driv-
ing directions [21] and electronic tour guides [1, 25] are
some compelling examples.

At present, every application is forced to maintain its
own silo of user location data. StarTrack addresses this
problem by providing a common infrastructure that col-
lects location information and enables access to it by
multiple applications. In recent years, a number of data
platforms (such as Twitter and Facebook) have emerged
that enable sharing of information between users. These
platforms provide external application developers with
an API for accessing user information. StarTrack can be
thought of as a platform that stores and enables access to
the tracks traversed by users in their daily lives.

Efficient collection of location data is an important
precursor to organizing this data and making it acces-
sible. The CarTel project [13] is a distributed sensor net-

work that supports data collection from mobile phones
and vehicular sensor networks. CarTel allows applica-
tions to visualize traces stored in a relational database
using spatial queries.

Database researchers have extensively studied the
problem of storing, indexing, and retrieving trajectories.
A trajectory is similar to a track in our system and is
modeled as a geometric object with 3 dimensions: two
for geographical location and a third for time. Prior work
has focused on range queries on trajectories and has led
to novel indexing techniques. For example, research has
shown that it is more efficient to separate the spatial and
temporal dimensions and to first index the spatial dimen-
sions [6]. There is also research that optimizes storage
and query costs when trajectories are drawn from a fixed
road network [2, 4, 22]. Some of the design decisions in
StarTrack are based on similar observations. StarTrack
additionally allows tracks with very similar geometries
to be pruned, resulting in even greater savings. Fur-
thermore, StarTrack exploits the repetitiveness in users’
tracks drawn from a road map to implement efficient sim-
ilarity and common segment queries, which are not stud-
ied in previous work.

8 Conclusion

StarTrack enables a broad class of track-based applica-
tions, involving both individual users and social network-
ing groups. Our original design of the StarTrack platform
focused almost exclusively on the set of operations that
would be useful to application developers and ignored
performance and scalability considerations. Significant
work went into revising the StarTrack design and imple-
mentation to enhance its efficiency, robustness, scalabil-
ity, and ease of use. In some cases, we were able to apply
well-known techniques, such as vertical data partitioning
and chained declustering. However, most of the observed
improvements come from innovative data structures like
track trees, new representations for canonicalized tracks,



and novel uses of delayed execution and caching.
The end result is a track-based service that shows sev-

eral orders of magnitude improvement in performance
for operations that are commonly used in the applications
that we have developed. This allows such applications
to meet their scalability requirements. Moving forward,
we plan to build and deploy additional track-based ap-
plications to further validate the practical utility of our
redesigned service.
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