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Abstract
Many synchronizations in existing multi-threaded pro-
grams are implemented in an ad hoc way. The first part
of this paper does a comprehensive characteristic study
of ad hoc synchronizations in concurrent programs. By
studying 229 ad hoc synchronizations in 12 programs of
various types (server, desktop and scientific), including
Apache, MySQL, Mozilla, etc., we find several interest-
ing and perhapsalarmingcharacteristics: (1) Every stud-
ied application uses ad hoc synchronizations. Specifically,
there are 6–83 ad hoc synchronizations in each program.
(2) Ad hoc synchronizations are error-prone.Significant
percentages (22–67%) of these ad hoc synchronizations
introduced bugs or severe performance issues. (3) Ad hoc
synchronization implementations are diverse and many of
them cannot be easily recognized as synchronizations, i.e.
have poor readability and maintainability.

The second part of our work builds a tool called
SyncFinder to automatically identify and annotate ad hoc
synchronizations in concurrent programs written in C/C++
to assist programmers in porting their code to better struc-
tured implementations, while also enabling other tools
to recognize them as synchronizations. Our evaluation
using 25 concurrent programs shows that, on average,
SyncFinder can automatically identify 96% of ad hoc syn-
chronizations with 6% false positives.

We also build two use cases to leverage SyncFinder’s
auto-annotation. The first one uses annotation to detect 5
deadlocks (including 2 new ones) and 16 potential issues
missed by previous analysis tools in Apache, MySQL and
Mozilla. The second use case reduces Valgrind data race
checker’s false positive rates by 43–86%.

1 Introduction
Synchronization plays an important role in concurrent pro-
grams. Recently, partially due to realization of multi-
core processors, much work has been conducted on syn-
chronization in concurrent programs. For example, vari-
ous hardware/software designs and implementations have
been proposed for transactional memory (TM) [37, 13, 30,
40] as ways to replace the cumbersome “lock” operations.
Similar to TM, some new language constructs [46, 7, 12]
such as Atomizer [12] have also been proposed to address

the atomicity problem. On a different but related note,
various tools such as AVIO [27], CHESS [31], CTrig-
ger [36], ConTest [6] have been built to detect or ex-
pose atomicity violations and data races in concurrent pro-
grams. In addition to atomicity synchronization, condition
variables and monitor mechanisms have also been studied
and used to ensure certain execution order among multiple
threads [14, 16, 22].

So far, most of the existing work has targeted only the
synchronizations implemented in a modularized way, i.e.,
directly calling some primitives such as “lock/unlock” and
“cond wait/condsignal” from standard POSIX thread li-
braries or using customized interfaces implemented by
programmers themselves. Such synchronization methods
are easy to recognize by programmers, or bug detection
and performance profiling tools.

Unfortunately, besides modularized synchronizations,
programmers also use their own ad hoc ways to do syn-
chronizations. It is usually hard to tell ad hoc synchro-
niztions apart from ordinary thread-local computations,
making it difficult to recognize by other programmers for
maintenance, or tools for bug detection and performance
profiling. We refer to such synchronization asad hoc syn-
chronization. If a program defines its own synchronization
primitives as functional calls and then uses these functions
throughout the program for synchronization, then we do
not consider these primitives as ad hoc, since they are well
modularized.

Ad hoc synchronization is often used to ensure an in-
tended execution order of certain operations. Specifi-
cally, instead of calling“condwait()” and “condsignal()”
or other synchronization primitives, programmers often
usead hoc loopsto synchronize with some shared vari-
ables, referred to assync variables. According to pro-
grammers’ comments, they are implemented this way due
to either flexibility or performance reasons.

Figure 1(a)(b)(c)(d) show four real world examples
of ad hoc synchronizations from MySQL, Mozilla, and
OpenLDAP. In each example, a thread is waiting for some
other threads by repetitively checking on one or more
shared variables, i.e. sync variables. Each case has its own
specific implementation, and it is also not obviously appar-
ent that a thread is synchronizing with another thread.

Unfortunately, there have been few studies on ad hoc
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/* 
�
wait for the other guy finish

    (not efficient, but rare)
�
  */

while (crc_table_empty ); 
write_table(.., crc_table[0]);
 /* MySQL */

/* MySQL */

/* wait for operations on tables from other threads*/
new_activity_counter  = 0;
background_loop:
      tables_to_drop = drop_tables_in_background();
      if(tables_to_drop > 0)
          os_thread_sleep(100000);
      while(n_pages_purged) {
           ...          
           log_buffer_flush_to_disk();
      }
      /* new activities come in, go active and serve */
      if(new_activity_counter  > 0)
            goto loop;
      else goto background_loop;
      

(a)  direct spinning

(b)  multiple exit conditions (d)  useful work inside waiting loop 
/* Mozilla */

/* wait until some waiting threads enter */
while(group->waiter->count == 0) {            
     � 
     /* abort if the group is not running */
     if(group->state  != _prmw_running) {
         PR_SetError(..);
         goto aborted;
     }
 }
 

for (deleted=0; ;) {
       THREAD_LOCK(…, dbmp->mutex);
       /* wait for other threads to release their    

references to dbmfp */
       if (dbmfp->ref == 1) {
           if (F_ISSET(dbmfp, MP_OPEN_CALLED))
              TAILQ_REMOVE(&dbmp->dbmfq, ..);
           deleted = 1;
        }
       THREAD_UNLOCK(…, dbmp->mutex);
     
       if (deleted)   break;
       __os_sleep(dbenv, 1, 0);
}

/* OpenLDAP */
(c) control dependency

Figure 1:Real world examples of ad hoc synchronizations. Sync variables are highlighted using bold fonts. Example (a) directly
spins on the sync variable; (b) checks more than one sync variables, (c) takes a certain control path to exit after checking a sync
variable, (d) performs some useful work inside the waiting loop.

synchronization. It is unclear how commonly it is used,
how programmers implement it, what issues are associated
with it, whether it is error-prone or not.

1.1 Contribution 1: Ad Hoc Synchroniza-
tion Study

In the first part of our work, we conduct a “forensic inves-
tigation” of 229 ad hoc synchronizations in 12 concurrent
programs of various types (server, desktop and scientific),
including Apache, MySQL, Mozilla, OpenLDAP, etc. The
goal of our study is to understand the characteristics and
implications of ad hoc synchronization in existing concur-
rent programs.

Our study has revealed several interesting,alarmingand
quantitative characteristics as follows:

(1) Every studied concurrent program uses ad hoc syn-
chronization. More specifically, there are 6–83 ad hoc
synchronizations implemented using ad hoc loops in each
of the 12 studied programs. The fact that programmers
often use ad hoc synchronization is likely due to two pri-
mary reasons: (i) Unlike typical atomicity synchroniza-
tion, when coordinating execution order among threads,
the intended synchronization scenario may vary from one
to another, making it hard to use a common interface
to fit every need (more discussion follows below and in
Section 2); (ii) Performance concerns make some of the
heavy-weight synchronization primitives less applicable.

(2) Although almost all ad hoc synchronizations are im-
plemented using loops, the implementations are diverse,
making it hard to manually identify them among the thou-
sands of computation loops. For example, Figure 1(a) di-
rectly spins on a shared variable; Figure 1(b) has multi-
ple exit conditions; Figure 1(c) shows the exit condition
indirectly depends on the sync variable and needs com-
plicated calculation to determine whether to exit the loop;
Figure 1(d) synchronizes on program states and performs
useful work while checking whether the remote thread has

Apps. #ad hoc sync #buggy sync
Apache 33 7 (22%)

OpenLDAP 15 10 (67%)
Cherokee 6 3 (50%)
Mozilla-js 17 5 (30%)

Transmission 13 8 (62%)

Table 1: Percentages of ad hoc synchronizations that had
introduced bugs according to the bugzilla databases and
changelogs of the applications.

changed the states or not. Such characteristic may par-
tially explain why programmers use ad hoc synchroniza-
tions. More discussion and examples are in Section 2.

(3) Ad hoc synchronizations are error-prone. Table 1
shows that among the five software systems we studied,
signficant percentages (22-67%) of ad hoc synchroniza-
tions introduced bugs. Although some experts may expect
such results, our study is among the first to provide some
quantitative results to back up this observation.

Ad hoc synchronization can easily introduce deadlocks
or hangs. As shown on Figure 2, Apache had a deadlock in
one of its ad hoc synchronizations. It holds a mutex while
waiting on a sync variable “queueinfo→idlers”. Figure 3
shows another deadlock example in MySQL, which has
never been reported previously. More details and the real
world examples are in Section 2.

Because they are different from deadlocks caused by
locks or other synchronization primitives, deadlocks in-
volving ad hoc synchronizations are very hard to detect
using existing tools or model checkers [11, 43, 24]. These
tools cannot recognize ad hoc synchronizations unless
these synchronizations are annotated manually by pro-
grammers or automatically by our SyncFinder described
in section 1.2. For the same reason, it is also hard for con-
currency testing tools such as ConTest [6] to expose these
deadlock bugs during testing.

Furthermore, ad hoc synchronizations also have prob-
lems interacting with modern hardware’s weak memory
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apr_thread_mutex_lock(&m);
while(!ring_empty(..)
   && expiration_time<timeout
   && get_worker(&idle_worker)){
        ...
}

worker thread:
apr_thread_mutex_lock(&m);
...
apr_atomic_inc32( queue_
                              info->idlers);

get_worker(..){
    while(queue_info->idlers==0);
}

listener thread :

/* Apache */

change log:“Never hold mutex while calling blocking operations”

Figure 2: A deadlock introduced by an ad hoc synchro-
nization in Apache.

Hold : mutex
Wait : global_read_block  (thread 3)

Hold : protect_global_read
Wait : mutex  (thread 1)

Hold : global_read_block;
Wait : protect_global_read  (thread 2) /* MySQL */

                             Thread 3
S3.1   global_read_block ++; 
                         ... 
S3.2   while(protect_global_read > 0) {...} 
                         ...
S3.3   global_read_block --;

                              Thread 1
S1.1  pthread_mutex_lock(&mutex);
                           …
S1.2  while(global_read_block) {…}
S1.3  pthread_mutex_unlock(&mutex);

                              Thread 2
S2.1  protect_global_read ++;
                          ...
S2.2  pthread_mutex_lock(&mutex);
S2.3  protect_global_read --;

Figure 3: A deadlock caused by a circular wait among
three threads (This is a new deadlock detected by our dead-
lock detector leveraging SyncFinder’s auto-annotation).
Thread 2 is waiting at S2.2 for the lock to be released by
thread 1; thread 1 is waiting at S1.2 for thread 3 to decrease
the counter at S3.3; and thread 3 is waiting at S3.2 for thread2
to decrease another counter at S2.3.

consistency model and also with some compiler optimiza-
tions, e.g. loop invariant hoisting (discussed further in
Section 2).

By studying the comments associated with ad hoc syn-
chronizations, we found that some programmers knew
their implementations might not be safe or optimal, but
they still decided to keep their ad hoc implementations.

(4) Ad hoc synchronizations significantly impact the effec-
tiveness and accuracy of various bug detection and per-
formance tuning tools. Since most bug detection tools
cannot recognize ad hoc synchronizations, they can miss
many bugs related to those synchronizations, as well as
introduce many false positives (details and examples in
Section 2). For the same reason, performance profiling
and tuning tools may confuse ad hoc synchronizations
for computation loops, thus generating inaccurate or even
misleading results.

1.2 Contribution 2: Identifying Ad Hoc
Synchronizations

Our characteristic study on ad hoc synchronization reveals
that ad hoc synchronization is often harmful with respect
to software correctness and performance. The first step
to address the issues raised by ad hoc synchronization is

to identify and annotate them, similar to the way that type
annotation helps Deputy [9] and SafeDrive [50] to identify
memory issues in Linux. Specifically, if ad hoc synchro-
nizations are annotated in concurrent programs, (1) static
or dynamic concurrency bug (e.g. data race and deadlock)
detectors can leverage such annotations to detect more
bugs and prune more false positives caused by ad hoc syn-
chronizations; (2) performance tools can be extended to
capture bottlenecks related to these synchronizations; (3)
new programming language/model designers can study ad
hoc synchronizations to design or revise language con-
structs; (4) programmers can port such ad hoc synchro-
nizations to more structured implementations.

Unfortunately, ad hoc synchronizations are very hard
and time-consuming to recognize and annotate manu-
ally. Partly because of this, although some annotation
languages for synchronizations like Sun Microsystems’
Lock Lint [2] have been available for several years, they
are rarely used, even in Sun’s own code [35]. Further-
more, manual examination is also error-prone. Figure 4
shows a MySQL ad hoc synchronization example that we
missed during the manual identification we conducted for
our characteristic study. Fortunately, our automatic iden-
tification tool SyncFinder found it. We overlooked this
example because of the complicated nested “goto” loops.

loop:                 
    if(shutdown_state  > 0)
        goto background_loop;

              ...
    if(shutdown_state  == EXIT)
       os_thread_exit(NULL)
    goto loop;

            ...
background_loop:
    /* background operations */
    if(new_activity_counter  > 0)
          goto loop;
    else  
          goto background_loop;
          

/* MySQL */

Figure 4:An ad hoc synchronization missed in our manual
identification process of our characteristic study but is iden-
tified by our auto-identification tool, SyncFinder. The inter-
locked “goto” loops can easily be missed by manual identifica-
tion (Figure 1(d) shows more detailed code).

Motivated by the above reasons, the second part of our
work involved building a tool calledSyncFinder to auto-
matically identify and annotate ad hoc synchronizations
in concurrent programs. SyncFinder statically analyzes
source code using inter-procedural, control and data flow
analysis, and leverages several of our observations and in-
sights gained from our study to distinguish ad hoc syn-
chronizations apart from thousands of computation loops.

We evaluate SyncFinder with 25 concurrent programs
including the 12 used in our characteristic study and 13
others. SyncFinder automatically identifies and annotates
96% of ad hoc synchronization loops with 6% false posi-
tives on average.

To demonstrate the benefits of auto-annotation of ad
hoc synchronizations by SyncFinder, we design and eval-
uate two use cases. In the first use case, we build a sim-
ple wait-inside-critical-section detector, which can iden-
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Total Ad hoc
Apps. Desc. LOC.

loops loops
Apache 2.2.14 Web server 228K 1462 33
MySQL 5.0.86 Database server 1.0M 4265 83

OpenLDAP 2.4.21 LDAP server 272K 2044 15
Cherokee 0.99.44 Web server 60K 748 6

Mozilla-js 0.9.1 JS engine 214K 848 17
PBZip2 2-1.1.1 Parallel bzip2 3.6K 45 7

Transmission 1.83 BitTorrent client 96K 1114 13

Radiosity SPLASH-2 14K 80 12
Barnes SPLASH-2 2.3K 88 7
Water SPLASH-2 1.5K 84 9
Ocean SPLASH-2 4.0K 339 20
FFT SPLASH-2 1.0K 57 7

Table 2:The number of ad hoc synchronizations in concur-
rent programs we studied. Ad hoc sync is implemented with
an ad hoc loop using shared variables (i.e., sync variables)in it.

tify deadlock and bad programming practices involving ad
hoc synchronizations. In our evaluation, our tool detects
five deadlocks that are missed by previous deadlock detec-
tion tools in Apache, MySql and Mozilla, and, moreover,
two of the five are new bugs and have never been reported
before. In addition, even though some(16) of the detected
issues are not deadlocks, they are still bad practices and
may introduce some performance issues or future dead-
locks. The synchronization waiting loop inside a critical
section protected by locks can potentially cause cascading
wait effects among threads.

As the second use case, we extend the Valgrind [33]
data race checker to leverage the ad hoc synchronization
information annotated by SyncFinder. As a result, Val-
grind’s false positive rates for data races decrease by 43–
86%. This indicates that even though SyncFinder is not a
bug detector itself, it can help concurrency bug detectors
improve their accuracy by providing ad hoc synchroniza-
tion information.

2 Ad Hoc Synchronization Characteristics
To understand ad hoc synchronization characteristics, we
have manually studied 12 representative applications of
three types (server, desktop and scientific/graphic), as
shown on Table 2. Two inspectors separately investigated
almost every line of source code and compared the results
with each other. As shown on Table 3, in our initial study,
we missed a few ad hoc synchronizations, most of which
are those implemented using interlocked or nested goto
loops (e.g., the example in Figure 4). Fortunately, our
automatic identification tool, SyncFinder, discovers them,
and we were able to extend our manual examination to in-
clude such complicated types.

Threats to Validity. Similar to previous work, charac-
teristic studies are all subject to the validity problem. Po-
tential threats to the validity of our characteristic studyare
the representativeness of applications and our examination
methodology. To address the former, we chose a variety of
concurrent programs, including four servers, three clien-

Apps. #sync loops Ia Ib both
Apache 33 4 2 2
MySQL 83 12 8 7

OpenLDAP 15 3 3 2
PBZip2 7 1 0 0

Table 3: Ad hoc sync loops missed by human inspec-
tions. Two inspectors,Ia and Ib, investigate the same
source code separately. Most of the sync loops missed
by both inspectors (i.e., those in Apache and MySQL) are
interlocked or nested goto loops. Others (in OpenLDAP)
are for-loops doing complicated useful work and checking
synchronization condition in it, like one in Figure 1(d).

t/desktop concurrent applications as well as five scientific
applications from SPLASH-2, all written in C/C++, one of
the popular languages for concurrent programs. These ap-
plications are well representative of server, client/desktop-
based and scientific applications, three large classes of
concurrent programs.

In terms of our examination methodology, we have ex-
amined almost every line of code including programmers’
comments. This was an immensely time consuming effort
that took three months of our time. To ensure correctness,
the process was repeated twice, each time by a different
author. Furthermore, we were also quite familiar with the
examined applications, since we have modified and used
them in many of our previously published studies.

Overall, while we cannot draw any general conclusions
that can be applied to all concurrent programs, we believe
that our study does capture the characteristics of synchro-
nizations in three large important classes of concurrent ap-
plications written in C/C++.

Finding 1: Every studied application uses ad hoc syn-
chronizations. More specifically, there are 6–83 ad hoc
synchronizations in each of the 12 studied programs.
As shown in Table 2, ad hoc synchronizations are used in
all of our evaluated programs, and some programs (e.g.
MySQL) even use as many as 83 ad hoc synchronizations.
This indicates that, in the real world, it is not rare for pro-
grammers to use ad hoc synchronizations in their concur-
rent programs.

While we are not 100% sure why programmers use ad
hoc synchronizations, after studying the code and com-
ments, we speculate there are two primary reasons. The
first is because there are diverse synchronization needs to
ensure execution order among threads. Unlike atomicity
synchronization that shares a common goal, the exact syn-
chronization scenario for order ensurance may vary from
one to another, making it hard to design a common inter-
face to fit every need (more discussion in Finding 2).

The second reason is due to performance concerns on
synchronization primitives, especially those heavyweight
ones implemented as system calls. If the synchronization
condition can be satisfied quickly, there is no need to pay
the high overhead of context switches and system calls.
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Total Total Single exit condition Multiple exit cond. Total
Apps. sc sc sc sc mc mc async

loops Ad hoc -dir -df -cf -func total -all -Nall
total

func
Apache 1462 33 4 0 1 3 8 22 3 25 16 25
MySQL 4265 83 23 5 4 11 43 13 27 40 32 64

OpenLDAP 2044 15 2 0 0 2 4 4 7 11 9 15
Cherokee 748 6 0 2 0 1 3 0 3 3 1 5

Mozilla-js 848 17 2 4 1 4 10 4 1 5 5 15
PBZip2 45 7 0 0 0 1 1 0 6 6 7 7

Transmission1114 13 6 0 0 1 7 0 6 6 3 2

Radiosity 80 12 5 5 1 0 11 1 0 1 0 1
Barnes 88 7 6 1 0 0 7 0 0 0 0 0
Water 84 9 9 0 0 0 9 0 0 0 0 0
Ocean 339 20 20 0 0 0 20 0 0 0 0 0
FFT 57 7 7 0 0 0 7 0 0 0 0 0

sc 
 -dir

 -df  
 
 -cf   

     
mc             
 -all     

 -Nall 

func 

async 

: single exit cond.
: directly depends 
  on a sync var
: has data 
  dependency 
: has control  
  dependency  

: multiple exit cond.            
: all exit conditions
  depend on sync vars

: not all, but at least 
  one does

: inter-procedural 
  dependency 
: useful work while   
  waiting

Table 4:Diverse ad hoc synchronizations in concurrent programs we studied. (i) The number of exit conditions in synchroniza-
tion loops are various (sc vs. mc); (ii) There can be multiple, different types of dependencyrelations between sync variables and loop
exit conditions (-dir, -df, -cf, -func); (iii) Some synchronization loops do useful work with asynchronous condition checking (async).

while (1) {
      int o ldcount =  (g lobal->barrier).count ;
      …
      If(updatedcount == oldcount)  break;

   }                             /* SPLASH 2 */

/* Radiosity*/

in t fin ished = 0 ;
for(i =  0; i <  1000  &&  ! fin ished ; i ++) {

if(g lobal->pbar_count  >= n_proc)
fin ished =  1 ;

}

(a)  sc-df (data dependency )                        

(b )  m c-Nall (som e are  local exit cond itions )

/* w ait for the next b lock  from      
   a producer queue */
safe_m utex_lock(fifo ->m ut);  
fo r(;;) {
     If( !queue->em pty &&  
          queue->getData (Data) )
         break;
} /* PBZip2 */

(c) Function call

Bool queue ::getData(E lem Ptr & fileData) {
      E lem Ptr &headElem  = qData [head ] ;
       ...

     
   

 /*  search qD ata to find the requested 
     b lock .  If finds out, return  true ; 
     otherw ise , re turn fa lse  */

}

Figure 5: Examples of various ad hoc synchronizations.A sync variable is highlighted using a bold font. An arrow shows the
dependency relation from a sync variable to a loop-exit condition. The examples of other ad hoc categories are shown on Figure 1.

Such performance justifications are frequently mentioned
in programmers’ comments associated with ad hoc syn-
chronization implementations.

While ad hoc synchronizations are seemly justified, are
they really worthwhile? What are their impact on pro-
gram correctness and interaction with other tools? Can
they be expressed using some common, easy-to-recognize
synchronization primitives? We will dive into these ques-
tions in our finding 3 and 4, trying to shed some lights into
the tradeoffs.

Finding 2: Ad hoc synchronization is diverse.
Table 4 further categorizes ad hoc synchronizations from
several perspectives. Some real world examples for each
category can be found in Figure 1 and Figure 5.

(i) Single vs. multiple exit conditions:Some ad hoc syn-
chronization loops have only one exit condition1. We
call such sync loopssc loops. Unfortunately, many oth-
ers (up to 86% of ad hoc synchronizations in a program)
have more than one exit condition. We refer to them as
mc loops. In some of them (referred to asmc all), all exit

1A condition that can break the execution out of a loop.

conditions are satisfied by remote threads. In the other
loops (referred to asmc Nall), there are also somelocal
exit conditions such as time-outs, etc., that are indepen-
dent of remote threads and can be satisfied locally.

(ii) Dependency on sync variables:The simplest ad hoc
synchronization is just directly spinning on a sync variable
as shown on Figure 1(a). In many other cases (50-100%
of ad hoc synchronizations in a program), exit conditions
indirectly depend on sync variables via data dependencies
(referred to asdf, Figure 5(a)), control dependencies (re-
ferred to ascf, (Figure 1(c)), even inter-procedural depen-
dencies (referred to asfunc, Figure 5(c)).

(iii) Asynchronous synchronizations (referred as async):
In some cases (77% of ad hoc synchronizations in
server/desktop applications we studied), a thread does
not just wait in synchronization. Instead, it also per-
forms some useful computations while repetitively check-
ing sync variables at every iteration. For example, in Fig-
ure 1(d), a MySQL master thread does background tasks
like log flushing until a new SQL query arrives (by check-
ing newactivity counter).
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do {
  ret= m_skip_auto_increment ?        
         readAutoIncrementValue(...):
         getAutoIncrementValue(�);
} while(ret== -1 && --retries && ..);

 for (;;) {
    if (m_skip_auto_increment && 
         readAutoIncrementValue(...)
         || getAutoIncrementValue(...){ 
         if (--retries && ...) {
             my_sleep(retry_sleep);         
             continue;
         }
     }  break;
}    

/* 30 ms sleep 
for transaction */ 

/* get tuple Id of a table */

/* MySQL */ 

Figure 6:An ad hoc synchronization in MySQL was revised
by programmers to solve a performance problem.

Finding 3: Ad hoc synchronizations can easily intro-
duce bugs or performance issues.
After studying the 5 applications listed in Table 1, we
found that 22–67% of synchronization loops previously
introduced bugs or performance issues. These high issue
rates are alarming, and, as a whole, may be a strong sign
that programmers should stay away from ad hoc synchro-
nizations.

For each ad hoc synchronization loop, we use its corre-
sponding file and function names to find out in the source
code repository if there was any patch associated with it.
If there is, we manually check if the patch involves the ad
hoc sync loop. We then uses this patch’s information to
search the bugzilla databases and commit logs to find all
relevant information. By examining such information as
well as the patch code, we identify whether the patch is a
feature addition, a bug not related to synchronization, or
a bug caused exactly by the ad hoc sync loop. We only
count the last case.

Besides deadlocks (as demonstrated in Figure 2 and 3),
ad hoc synchronization can also introduce other types of
concurrency bugs. In some cases, an ad hoc synchroniza-
tion fails to guarantee an expected order and lead to a crash
because the exit condition can be satisfied by a third thread
unexpectedly. Due to space limitations, we do not show
those examples here.

In addition to bugs, ad hoc synchronizations can also
introduce performance issues. Figure 6 shows such an ex-
ample. In this case, the busy wait can waste CPU cycles
and decrease throughput. Therefore, programmers revised
the synchronization by adding a sleep inside the loop.

Ad hoc synchronizations also have problematic interac-
tions with modern hardware’s relaxed consistency mod-
els [5, 28, 45]. These modern microprocessors can reorder
two writes to different locations, making ad hoc synchro-
nizations such as the one in Figure 1(a) fail to guarantee
the intended order in some cases. As such, experts rec-
ommended programmers to stay away from such ad hoc
synchronization implementations, or at least implement
synchronizations using atomic instructions instead of just
simple reads or writes [5, 28, 45].

To make things even worse, ad hoc synchronizations
also have problematic interactions with compiler opti-
mizations such as loop invariant hoisting. Programmers

Comment examples
Programmers are aware of better design but still

use ad hoc implementation (8%)
/* This can be built insmarter way, like pthreadcond,
but we do it since the status can come from.. */
/* By doing.. applications will getbetter performance and
avoid the problem entirely. Regardless, we do this...
because we’d rather write error message in this routine, ..*/

Programmers try to prevent bugs at the first place (22%)
/* We could end upspinning indefinitely with a situation
where.. The ‘i++’ stops the infinite loop */ /* We can safely
wait here in the case.. without fear ofdeadlockbecause we
made.. */ /* This spinning actually isn’t necessary except
when thecompiler does corrupt 64bit arithmetic.. */

Programmers explicitly state their sync assumptions (75%)
/* GC doesn’t set the flag until it has waited forall active
requests to end*/ /* We must break the waitif one of the
following occurs: i).. ii).. iii).. iv).. v).. */

Table 5: Observations in programmers’ comments on ad
hoc synchronization from Apache, Mozilla, and MySQL. We
study 63 comments associated with ad hoc synchronizations.

should avoid such optimizations on sync variables, and
ensure that waiting loops always read the up-to-date val-
ues instead of the cached values from registers. As a
workaround, programmers may need to use wrapping vari-
able accesses with function calls [3]. All of these just
complicate programming as well as software testing and
debugging.

Interestingly, some programmers are aware of the above
ad hoc synchronization problems but still use them. We
study the 63 comments associated with ad hoc synchro-
nizations in MySQL, Apache, and Mozilla. As illustrated
in Table 5, programmers sometimes mentioned better al-
ternatives, but they still chose to use their ad hoc imple-
mentations forflexibility. In some cases, they explicitly
indicated their preference for thelightness and simplicity
of ad hoc spinning loops, especially when the synchro-
nizations were expected to rarely occur or rarely need to
wait long. Also, programmers often explicitly stated their
assumptions/expectation in comments about what remote
threads should do correspondingly, since ad hoc synchro-
nizations are complex and hard to understand.

Finding 4: Ad hoc synchronizations can significantly
impact the effectiveness and accuracy of concurrency
bug detection and performance profiling tools.
As mentioned earlier, since existing concurrency bug
(deadlock, data race) detection tools cannot recognize ad
hoc synchronizations, they will fail to detect bugs that
involve such synchronizations (e.g. deadlock examples
shown on Figure 2 and 3).

In addition, they can also introduce many false posi-
tives. It has been well known that most data race detectors
incur high false positives due to ad hoc synchronizations.
Such false positives come from two sources: (1)Benign
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                       Worker
S1    q_info->pools = new_recycle;
          �
S2    atomic_inc( &(q_info->idlers) );

                      Listener
S3   while(q_info->idlers == 0) {...}

S4   first_pool = q_info->pools;
       �            Thread 1

#define LAST_PHASE 1
loop:     
if(state < LAST_PHASE)
        goto loop;

                 Thread 2
  #define EXIT_THREADS 3
  state = EXIT_THREADS;

/* MySQL */ /* Apache */
(a) Benign data race on state (b) False data race on q_info->pools

Figure 7:False positives in Valgrind data race detection due to ad hocsynchronizations.

data races on sync variables: typically an ad hoc synchro-
nization is implemented via an intended data race on sync
variables. Figure 7(a) shows such a benign data race re-
ported by Valgrind [33] in MySQL. (2)False data races
that would never execute in parallel due to the execution
order guaranteed by ad hoc synchronizations: For exam-
ple, in Figure 7(b), the two threads are synchronized at S2
and S3, which guarantees the correct order between S1 and
S4’s accesses toq info→pools. S1 and S4 would never
race with each other. However, most data race checkers
cannot recognize this ad hoc synchronization and, as a re-
sult, incorrectly report S1 and S4 as a data race.

Synchronization is also a big performance and scala-
bility concern because time waiting at synchronization is
wasted. Unfortunately, existing work in synchronization
cost analysis [25, 32] and performance profiling [29] can-
not recognize ad hoc synchronizations, and therefore the
synchronizations can easily be mistaken as computation.
As a result, the final performance profiling results may
cause programmers to make less optimal or even incorrect
decisions while performance tuning.

Replacing with synchronization primitives. Our find-
ings above reveal that ad hoc synchronization is often
harmful in several respects. Therefore, it is desirable
that programmers use synchronization primitives such
as condwait, rather than ad hoc synchronization. Fig-
ure 8 shows how ad hoc synchronization can be replaced
with a well-known synchronization primitive, POSIX
pthreadcondwait(). Note that it may not always be
straightforward to use existing synchronization primitives
to replace all ad hoc synchronizations, because existing
synchronization primitives may not be sufficient to meet

pthread_m utex_ lock(&m utex);
w hile  (crc_ tab le_em pty) {
    p thread_cond_w ait(& cond_var, 
          & m utex);
}
pthread_m utex_unlock(& m utex);

w rite_tab le (.., c rc_tab le [0]);

w hile  (crc_tab le_em pty ); 
w rite_tab le (out, crc_ tab le [0]);
 

w hile (1 ) {
    in t o ldcount =  (g lobal->barrier).count;
    …
    if(updatedcount ==  o ldcount) break;
}           

pthread_m utex_ lock(& m utex);
w hile (1 ) {
    in t o ldcount =  (go lba l->barrier).coun t;
    ...
    if(updatecount ==  o ldcount) break;
    pthread_cond_w ait(&cond_var, & m utex);
 }
 p thread_m utex_unlock(& m utex);

/* 
�
w ait for the other guy to  fin ish

    (not e ffic ient, but rare )
�
  */

(a ) M yS Q L (b) SP LA S H2 

Figure 8: Replacing ad hoc synchronizations with synchro-
nization primitives using condition variables. (a) shows the
re-implementation of ad hoc synchronization in Figure 1(a); (b)
is for Figure 5(a).

the diverse synchronization needs as well as the perfor-
mance requirements, as discussed in Finding 1.

3 Ad hoc Synchronization Identification

3.1 Overview

As ad hoc synchronizations have raised many challenges
and issues related to correctness and performance, it would
be useful to identify and annotate them. Manually doing
this is tedious and error-prone since they are diverse and
hard to tell apart from computation. Therefore, the second
part of our work builds a tool called SyncFinder to auto-
matically identify and annotate them in the source code of
concurrent programs. The annotation can be leveraged in
several ways as discussed in Section 1.2.

There are two possible approaches to achieve the above
goal. One is dynamic and is done by analyzing run-time
traces. The other approach is static, involving the analysis
of source code. Even though the dynamic approach has
more accurate information than the static method, it can
incur large (up to 30X [27]) run-time overhead to collect
memory access traces. In addition, the number of ad hoc
synchronizations that can be identified using this method
would largely depend on the code coverage of test cases.
Also some ad hoc synchronization loops may terminate
after only one iteration, making it hard to identify them as
ad hoc synchronization loops [18]. Due to these reasons,
we choose the static method, i.e., analyzing source code.

The biggest challenge to automatically identify ad hoc
synchronizations is how to separate them from computa-
tion loops. The diversity of ad hoc synchronizations makes
it especially hard. To address the above challenge, we have
to identify the common elements among various ad hoc
synchronization implementations.
Commonality among ad hoc synchronizations: Interest-
ingly, ad hoc synchronizations are all implemented using
loops, referred to assync loops(Figure 9). While a sync
loop can have many exit conditions, at least one of them
is the exit condition to be satisfied when an expected syn-
chronization event happens. We refer to such exit condi-
tions assync conditions. The sync condition directly or
indirectly depends on a certain shared variable (referred
asa sync variable) that is loop-invariant locally, and mod-
ified by a remote thread.

Note that a sync variable may not necessarily be directly
used by a sync condition (e.g., inside a while loop condi-
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Figure 10:SyncFinder design to automatically identify and annotate ad hoc synchronization

(a) spinning

WR

(b) asynchronous checking

W

R

T1 T2

Sync.
 loop

compu-
tation

T1 T2

flagflag

flag

flagSync.
loop

flag : Synchronization variable, W flag :Synchronization write

Figure 9:Ad hoc synchronization abstract model.The loop
exit condition (i.e., sync condition) either directly or indirectly
depends on a sync variable.

tion). Instead, a sync condition may have data/control-
dependency on it like in the examples shown on Fig-
ure 1(c) and Figure 5(a)(c).

Following the above characteristic, SyncFinder starts
from loops in the target programs, and examines their exit
conditions to identify those that are (1) loop invariant, (2)
directly or indirectly depend on a shared variable, and (3)
can be satisfied by a remote thread’s update to this vari-
able. By checking these constraints, SyncFinder filters out
most computation loops as shown in our evaluation.

Checking all of the above conditions requires
SyncFinder to conduct (1) program analysis to know
the exit conditions for each loop; (2) data and control flow
analysis to know the dependencies of exit conditions;
(3) some static thread analysis to conservatively identify
what segment of code may run concurrently; and (4) some
simple satisfiability analysis to check whether the remote
update to the sync variable can satisfy the sync condition.

As shown on Figure 10, SyncFinder consists of the fol-
lowing steps: (1) Loop detection and exit condition ex-
traction; (2) Exit dependent variable (EDV) identification;
(3) Pruning computation and condvar loops based on char-
acteristics of EDVs; (4) Synchronization pairing to pair an
identified sync loop with a remote update that would break
the program out of this sync loop; (5) Final result reporting
and annotation in the target program’s source code.

SyncFinder is built on top of the LLVM compiler in-
frastructure [23] since it provides several useful basic fea-
tures that SyncFinder needs. LLVM’s intermediate repre-
sentation (IR) is based on single static assignment (SSA)
form, which automatically provides a compact definition-
use graph and control flow graph for every function,

both of which can be leveraged by SyncFinder’s data-,
and control-flow analysis. In addition, SyncFinder also
uses LLVM’s loopinfo analysis, alias analysis, and con-
stant propagation tracking to implement the ad hoc sync
loop identification algorithm. SyncFinder annotation is
done via the static instrumentation interfaces provided in
LLVM. In the rest of this section, we focus on our algo-
rithms and do not go into details about the basic analysis
provided by LLVM.

3.2 Finding Loops

Apps. while for goto Total
Apache 27 4 2 33
MySQL 33 24 26 83

OpenLDAP 7 4 4 15
Mozilla-js 12 4 1 17

Table 6: Loop mechanisms used for real-world ad hoc syn-
chronization. There are a non-negligible number of ”goto”
loops, which often complicate loop analysis (e.g., Figure 4).

As shown in Table 6, ad hoc synchronizations are imple-
mented using three primary forms of loops: “while”, “for”
and “goto”. Fortunately, LLVM’s loopinfo pass identifies
all those loops based on back edges in LLVM IR.

For each loop identified by LLVM, SyncFinder extracts
its exit conditions. Specifically, it identifies the basic
blocks with at least one successor outside of the loop, then
for each identified basic block, SyncFinder extracts its ter-
minator instruction, from which SyncFinder can identify
the branch conditions. Such conditions are the exit con-
ditions for this loop. SyncFinder represents the exit con-
ditions in a canonical form: disjunction (OR) of multiple
conditions, and examines each separately.

In addition, since LLVM does not keep the loop context
information, e.g., loop headers and bodies, across func-
tions, SyncFinder keeps track of them into its own data
structure and uses them throughout the analysis.

3.3 Identifying Sync Loops

The key challenge of SyncFinder is to differentiate sync
loops from computation loops. To address this challenge,
SyncFinder examines the exit conditions of each loop by
going through the following steps to filter out computation
loops.
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Figure 11: Leaf-EDV identification. SyncFinder recursively
tracks Exit Dependent Variables(EDVs) along the data-, control-
flow, until it reaches a leaf-EDV.

(1) Exit Dependent Variable (EDV) analysis :For each
exit condition of each loop in the target program, the first
step is to identify all variables that this exit condition de-
pends on—we refer to them as exit dependent variables
(EDVs). If a loop is a sync loop, the sync variables
should be included in its EDVs. Note that a sync vari-
able is not necessarily used in an exit condition (sync con-
dition) directly. A loop exit condition can be data/control-
dependent on a sync variable. Therefore, we conduct data-
flow and control-flow analysis to find indirect EDVs. The
EDV identification process is similar to static backward
slicing [48, 38, 15].

SyncFinder first starts from variables directly refer-
enced in the exit condition. They are added into an EDV
set. Then, as shown in Figure 11, it pops a variable out
from the EDV set, and finds out new EDVs along this vari-
able’s data/control flow. New EDVs are inserted into the
set. It then pops another EDV from the set, and so on so
forth until it reaches the loop boundary. For an EDV that
does not depend on any other variables inside this loop, we
refer them as aleaf-EDV(similar to “live-in” variables).
SyncFinder maintains a separate set for leaf-EDVs. Ob-
viously, leaf-EDVs are the ones we should focus on since
they are not derived from any other EDVs in this loop.

During the backward data/control flow tracking process,
if the dependency analysis encounters a function whose
return value or passed-by-reference arguments affect the
loop exit condition, SyncFinder further tracks the depen-
dency via inter-procedural analysis. SyncFinder applies
data- and control-flow analysis starting from the function’s
return value, and identifies Return/arguments-Dependent
Variables (RDVs) in the callee. Such RDVs are also added
into the leaf-EDV set. In addition, all RDVs of this func-
tion are stored in a summary to avoid analyzing this func-
tion again for other loops.

To handle variable and function pointer aliasing,
SyncFinder leverages and extends LLVM’s alias analysis
to allow it go beyond function boundary.
(2) Pruning computation loops For everyexit condition
of a loop, SyncFinder applies the following two pruning
steps to check whether it is a sync condition. At the end,
if a loop hasat leastone sync condition, it is identified as
a sync loop. Otherwise, it is pruned out as a computation

loop. Most computation loops are filtered in this phase.

Non-shared variable pruning: A sync variable should
be a shared variable that can be set by a remote thread.
Specifically, it should be either a global variable, a heap
object, or a data object (even stack-based) that is passed to
a function (e.g., thread starter function) called by another
thread, which can be shared by the two threads.

Therefore, if an exit condition has no shared variables in
its leaf-EDV set, it is deleted from the loop’s exit condition
set. SyncFinder moves to the next exit condition of this
loop. If the loop has no exit conditions left, this loop is
pruned out as a computation loop.

Loop-variant based pruning: In almost all cases, a
sync condition is loop-invariant locally, and only a remote
thread changes the result of the sync condition. Based on
this observation, SyncFinder prunes out those exit condi-
tions that are loop-variant locally as shown on Figure 12.
It is possible that some ad hoc synchronizations may also
change the sync conditions locally. In all our experiments
with 25 concurrent programs, we did not find any true ad
hoc synchronizations that SyncFinder missed due to this
pruner. Note that some exit conditions, such as expiration
time, are separated as different conditions, and we exam-
ineeachconditionseparately.

for (i = 0; i < nlights; i++){
  VecMatMult(lp->pos, m, lp->pos);
  lp = lp->next;
}    

(a) Loop-variant module

while(module){
    next = module->next;
    free(module);
    module = next;      }
  (b) Loop-variant condition checking 

/* Mozilla */ /* SPLASH */

Figure 12: The non-sync variables pruned out by loop-
variant based pruning. In the two computation loops, the vari-
ables in italic font are shared variable leaf-EDVs.

To check if an exit condition is loop variant, SyncFinder
applies a modification (MOD) analysis within the scope
of a loop being examined. Specifically, it checks all leaf-
EDVs and leaf-RDVs of this loop, and prunes out those
modified locally within this loop. The leaf-RDV summary
is also updated accordingly.
(3) Pruning condvar loops: SyncFinder does not con-
sider condvar loops (i.e., sync loops that are associated
with condwait primitives) as ad hoc loops as they can be
easily recognized by intercepting or instrumenting these
primitives. As the final step of the ad hoc sync loop identi-
fication, SyncFinder checks every loop candidate to see it
calls a condwait primitive inside the loop. Loops that use
primitives are recognized as condvar loops and are thereby
pruned out. The names of condwait primitives(original
pthread functions or wrappers) are provided as input to
SyncFinder to identify condwait calls.

3.4 Synchronization Pairing

Once we identify a potential sync loop, we find the re-
mote update (referred asa sync write) that would “release”
(break) the wait loop. To identify a sync write, SyncFinder
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Apps. total constant inc/dec op
Apache 42 21 (50.0%) 5 (11.9%)
MySQL 325 125 (38.5%) 110 (33.8%)

OpenLDAP 203 48 (23.6%) 8 (3.9%)
Mozilla-js 83 41 (49.4%) 31 (37.3%)

Table 7:The characteristics of writes to sync variables. In
the four sampled applications, majority of writes assign constant
values, or use simple increase or decrease operations.

first collects all write instructions modifying sync variable
candidates, and then applies the following pruning steps.
Pruning unsatisfiable remote updatesFor each remote
update to the target sync variable candidate, SyncFinder
analyzes what value is assigned to this variable, and
whether it can satisfy the sync condition. A complicated
solution to achieve this functionality is to use a SAT solver.
But it is too heavyweight, especially since, according to
our observations (shown in Table 7), the majority(66%)
of sync writes either assign constant values to sync vari-
ables, or use simple counting operations like incremen-
t/decrement, rather than complicated computations. This
is because a sync variable is usually a control variable (e.g.
status, flag, etc.) and does not require sophisticated com-
putations.

Therefore, instead of using a SAT solver, we use con-
stant propagation to check if this remote update would sat-
isfy the exit condition. For an assignment with a constant,
it substitutes the variable with the constant, and propagates
it till the exit condition to see if it is satisfiable or not. For
increment based updates, SyncFinder treats it as “sync var
> 0” since it obviously does not release the loop that is
waiting for an exit condition “(sync var == 0)”.

Pruning serial pairs A sync loop and a sync write should
be able to execute concurrently. If there is a happens-
before relation between such pair, due to thread cre-
ation/join, barrier, etc, the remote write does not match
with the sync loop. Due to the limitation of static analysis,
currently SyncFinder conservatively prunes serial pairs re-
lated to only thread creation/join. Specifically, SyncFinder
follows thread creation and conservatively estimates code
that might be running concurrently.

3.5 SyncFinder Annotation

After the above pruning process, the remaining ones
are identified as sync loops, along with their corre-
sponding sync writes. All the results are stored in a
file. SyncFinder also automatically annotates in the tar-
get software’s source code using LLVM static instru-
mentation framework. It inserts//#SyncAnnotation:
Sync Loop Begin(&loopId), //#SyncAnnotation:

Sync Loop End(&loopId), respectively, at the begin-
ning and end of an identified sync loop. In addi-
tion, inside the loop, it also annotates the read to
a sync variable by inserting//#SyncAnnotation:

Sync Read(&syncVar, &loopId). For the corre-
sponding sync write, it inserts//#SyncAnnotation:
Sync Write(&syncVar, &loopId). The loopId is
used to match a remote sync write with a sync loop. Sim-
ilar annotations are also inserted into the target program’s
bytecode to be leveraged by concurrency bug detection
tools as discussed in the next section.

4 Two Use Cases of SyncFinder
SyncFinder’s auto-identification can be used by many bug
detection tools, performance profiling tools, concurrency
testing frameworks, program language designers, etc. We
built two use cases to demonstrate its benefits.

4.1 A Tool to detect bad practices
It is considered bad practice to wait inside a critical sec-
tion, as it can easily introduce deadlocks like the Apache
example shown on Figure 2 and the MySQL example on
Figure 3. Furthermore, it can result in performance is-
sues caused by cascading wait effects, and may introduce
deadlocks in the future if programmers are not careful. As
a demonstration, we built a simple detector (referred to as
wait-inside-critical-section detector) to catch these cases
leveraging SyncFinder’s auto-annotation of ad hoc syn-
chronizations. Our detection algorithm can be easily in-
tegrated into any existing deadlock detection tool as well.

To detect such pattern, our simple detector checks ev-
ery sync loop annotated by SyncFinder to see if it is per-
formed while holding some locks. If a sync loop is hold-
ing a lock, then SyncFinder checks the remote sync write
to see whether the write is performed after acquiring the
same lock or after another ad hoc sync loop, so on and so
forth, to see if it is possible to form a circle. If it is, the
detector reports it as a potential issue: either a deadlock or
at least a bad practice.

4.2 Extensions to data race detection
We also extend Valgrind [33]’s dynamic data race detec-
tor to leverage SyncFinder’s auto-identification of ad hoc
sync loops. Valgrind implements a happens-before algo-
rithm [21] using logical timestamps, which was originally
based on conventional primitives including mostly lock
primitives, and thread creation/join. Itcannotrecognize ad
hoc synchronizations. As a result, it can introduce many
false positives (shown in Table 12) as discussed in Sec-
tion 2 and illustrated using two examples in Figure 7.

We extend Valgrind to eliminate data race false posi-
tives by considering ad hoc synchronizations annotated by
SyncFinder. It treats the end of a sync loop in a similar
way to a condwait operation, and the corresponding sync
write like a signal operation. This way it keeps track of
the happens-before relationship between them. We also
extend Valgrind to not consider sync variable reads and
writes as data races.
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Apps. Total Identified Sync Loops Missed
loops Total True FP ones

S
er

ve
r

Apache 1462 17 15 2 1
MySQL 4265 48 42 6 3

OpenLDAP 2044 18 14 4 1
Cherokee 748 6 6 0 0

AOLServer 496 6 6 0 -
Nginx 705 12 11 1 -

BerkeleyDB 1006 15 11 4 -
BIND9 1372 5 4 1 -

D
es

kt
op

Mozilla-js 848 16 11 5 1
PBZip2 45 7 7 0 0

Transmission 1114 14 12 2 1
HandBrake 551 13 13 0 -

p7zip 1594 10 9 1 -
wxDFast 154 6 6 0 -

S
ci

en
tifi

c

Radiosity 80 12 12 0 0
Barnes 88 7 7 0 0
Water 84 9 9 0 0
Ocean 339 20 20 0 0
FFT 57 7 7 0 0

Cholesky 362 8 8 0 -
RayTracer 144 3 3 0 -

FMM 108 8 8 0 -
Volrend 77 9 9 0 -

LU 38 0 0 0 -
Radix 52 14 14 0 -

Total 290 264 26
(Ave.)

-
(11.6) (10.6) (1.0)

-

Table 8: Overall results of SyncFinder: Every concurrent
program uses ad hoc sync loops except LU. Both true ad hoc
sync loops and false positives are showed here. For the 12 pro-
grams used in the characteristic study, the numbers of missed ad
hoc sync loops are also reported. They are generated by com-
paring with our manual checking results from the characteristic
study. We cannot show the numbers of missed ad hoc sync loops
for the unseen programs in the study since we did not manu-
ally examine them as we did for the 12 studied programs. To
show SyncFinder’s total exploration space, we also show theto-
tal number of loops, most of which are computation loops. Note
that the total numbers of ad hoc sync loops are different from
those numbers shown in Table 2 because some code (for other
platforms such as FreeBSD, etc) are not included during the com-
pilation.

5 Evaluation

5.1 Effectiveness and Accuracy

We evaluated SyncFinder on 25 concurrent programs,
including 12 used in our manually characteristic study
and 13 other ones. Table 8 shows the overall result of
SyncFinder on the 25 programs. On average SyncFinder
accurately identifies 96% of ad hoc sync loops in the 12
studied programs and has a 6% false positive rate overall.
SyncFinder successfully identified diverse ad hoc order
synchronizations, including those we missed during our

manual identification. For example, it successfully identi-
fies those complicated, interlocked “goto” sync loops, as
shown in Figure 4.

For the 12 studied programs, SyncFinder misses a
few(1-3 per application) sync loops in large server/desk-
top applications. Considering the total number of loops
(up to 4265) in each of these applications, such a small
miss rate does not limit SyncFinder’s applicability to real
world programs. SyncFinder fails to identify these sync
loops because of the unavailability of the source code for
these library functions and inaccurate pointer alias.

SyncFinder also returns a low number of false positives
for all 25 programs. As showed in Table 8, SyncFinder has
0-6 false positives per program (i.e. a false positive rate of
0-30%). Such numbers are quite reasonable. Program-
mers can easily examine the reported sync loops to prune
out those few false positives. Most of the false positives
are caused by inaccurate function pointer analysis. Due to
complicated function pointer alias, sometimes SyncFinder
cannot further track into callee functions to check if a tar-
get variable (leaf-EDV) is locally modified. In these cases,
SyncFinder conservatively considers the target variable as
a sync variable.

5.2 Sync Loop Identification and Pruning

Apps. Total Exit Leaf- Aft non- Aft loop- Aft cond-
loops cond. EDVs -shared pr. var. pr. var pr.

Apache 1,462 3,120 8,682 184 24 20
MySQL 4,265 9,181 20,458 377 118 72

OpenLDAP 2,044 4,434 11,276 171 45 27
PBZip2 45 278 799 130 16 9

Table 9:EDV Analysis and non-sync variable pruning. After
identifying leaf-EDVs for each loop, SyncFinder applies non-
shared, loop-variant and condvar-loop based pruning schemes.
The final results are the sync variables of the ad hoc sync loops.
Some sync variables may be associated with a same sync loop.

To show the effectiveness of sync loop identification,
in Table 9, we test SyncFinder on some server/desktop
applications and show the results from each of the sync
loop identification steps. From the total loops identified,
SyncFinder extracts exit conditions, and identifies all leaf-
EDVs (the third column in Table 9). From the leaf-EDVs,
SyncFinder prunes out non-shared variables (95% of leaf-
EDVs), and applies loop-variant based pruning, which fur-
ther prunes 80% of shared leaf-EDVs. SyncFinder then
applies the final pruning step to prune out sync variables
that are associated with condvar loops. The remains are
sync variable candidates and those loops using them are
potential sync loops.

5.3 Synchronization Pairing and Pruning

During synchronization pairing, SyncFinder applies two
pruning schemes, unsatisfiable remote update pruning and
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Apps. Initial w/ Remote w/ Serial With True
pairs update pr. pair pr. both pairs

Apache 27 22 27 22 21
MySQL 251 204 178 141 123

OpenLDAP 168 134 146 115 96
PBZip2 19 15 11 9 9

Table 10:False synchronization pair pruning. Note that the
numbers shown here are synchronizationpairs. In all the other
results, we show “synchronization loops” (regardless how many
setting statements for an ad hoc sync loop)

serial pair pruning. Table 10 shows the effect of those
pruning steps on the same set of server/desktop applica-
tions in Table 9. First, remote update based pruning elimi-
nates 51.8% of false sync pair candidates on average. It is
especially effective on Apache, since the majority of sync
writes are just simple assignments with constant values, so
it is easy to determine whether such values would satisfy
the corresponding sync exit conditions.

Second, the effectiveness of serial pair pruning depends
on application characteristics. While it prunes out almost
all false positives in simple desktop/scientific programs
(e.g., PBZip2), it is less effective in servers like Apache,
where many function pointers are used. Due to the limita-
tion of function pointer analysis, it is hard to know in all
cases whether two certain regions cannot be concurrent.
To be conservative, SyncFinder does not prune the pairs
inside such regions. Fortunately, the remote update based
pruning helps filtering them out.

5.4 Two Use Cases: Bug Detection

Apps. Deadlock (New) Bad practice

Apache 1 ( 0 ) 1
MySQL 2 ( 2 ) 13
Mozilla 2 ( 0 ) 2

Table 11:Deadlock and bad practice detection

Table 11 shows that oursimpledeadlock detector (leverag-
ing SyncFinder’s ad hoc synchronization annotation) de-
tects five deadlocks involving ad hoc order synchroniza-
tions, including those shown in Figure 2 and Figure 3.
Previous tools would fail to detect these bugs since they
cannot recognize ad hoc synchronizations. Besides dead-
locks, our detector also reports 16 bad practices, i.e. wait-
ing in a sync loop while holding a lock, which could raise
performance issues or cause future deadlocks.

Apps. Original Extended %Pruned
Valgrind Valgrind

Apache 30 17 43%
MySQL 25 10 60%

OpenLDAP 7 4 43%
Water 79 11 86%

Table 12:False positive reduction in Valgrind

Table 12 shows that SyncFinder auto-annotation could
reduce the false positive rates of Valgrind data race detec-
tor by 43-86%.

6 Related Work

Spin and hang detection Some recent work has been
proposed in detectingsimplespinning-based synchroniza-
tions [32, 25, 18]. For example, [25] proposed some new
hardware buffers to detect spinning loops on-the-fly. [18]
also provides similar capability but does it in software.
Both can detect only simple spinning loops, i.e. those sync
loops with only one single exit condition and also directly
depend on sync variables (referred as “sc-dir” in Table 3
in Section 2). As shown in Table 3 such simple spinning
loops account for less than 16% of ad hoc sync loops on
average in server/desktop applications we studied.

Besides, both of them are dynamic approaches and
thereby suffer from the coverage limitation of all dy-
namic approaches (discussed in Section 3). In contrast,
SyncFinder uses a static approach and can detect various
types of ad hoc synchronizations. Additionally, we also
conduct an ad hoc synchronization characteristic study.
Synchronization annotation Many annotation lan-
guages [4, 2, 1, 41] have been proposed for synchroniza-
tions in concurrent programs. Unfortunately, annotation
is not frequently used by programmers since it is tedious.
SyncFinder is complementary to these work by providing
automatic annotation for ad hoc synchronizations.
Concurrent bug detection tools Much research has been
conducted on concurrency bug detection [47, 20, 31, 6,
17, 11, 43]. These tools usually assume that they can
recognize all synchronizations in target programs. As we
demonstrated using deadlock detection and race detection,
SyncFinder can help these tools improve their effective-
ness and accuracy by automatically annotating ad hoc syn-
chronizations that are hard for them to recognize.
Transactional memory Various transactional memory
designs have been proposed to solve the programmability
issues related to mutexes [39, 30, 19, 44] and also con-
dition variables [10]. Our study complements such work
by providing ad hoc synchronization characteristics in real
world applications.
Software bug characteristics studies Several studies
have been conducted on the characteristics of software
bugs [8, 42, 34], including one of our own [26] on con-
currency bug characteristics. This paper is different from
those studies by focusing on ad hoc synchronizations in-
stead of bugs, even though many of them are prone to in-
troducing bugs. The purpose of this paper is to raise the
awareness of ad hoc synchronizations, and to warn pro-
grammers to avoid them when possible. Also we devel-
oped an effective way to automatically identify those ad
hoc synchronizations in large software.

7 Conclusions and Limitations
In this paper, we provided a quantitative characteristics
study of ad hoc synchronization in concurrent programs
and built a tool called SyncFinder to automatically identify
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and annotate them. By examining 229 ad hoc synchroniza-
tion loops from 12 concurrent programs, we have found
several interesting and alarming characteristics. Among
them, the most important results include: all concurrent
programs have used ad hoc synchronizations and their im-
plementations are very diverse and hard to recognize man-
ually. Moreover, a large percentage (22-67%) of ad hoc
loops in these applications have introducedbugs or perfor-
mance issues. They also greatly impact the accuracy and
effectiveness of bug detection and performance profiling
tools. In an effort to detect these ad hoc synchronizations,
we developed SyncFinder, a tool that successfully identi-
fies 96% of ad hoc synchronization loops with a 6% false
positive rate. SyncFinder helps detect deadlocks missed
by conventional deadlock detection and also reduce data
race detector’s false positives. Many other tools and re-
search projects can also benefit from SyncFinder. For ex-
ample, concurrency testing tools (e.g., CHESS [31]) can
leverage SyncFinder’s auto-annotation to force a context
switch inside an ad hoc sync loop to expose concurrency
bugs. Similarly, performance tools can be extended to pro-
file ad hoc synchronization behavior.

All work has limitations, and ours is no exception: (i)
SyncFinder requires source code. However, this may not
significantly limit SyncFinder’s applicability since it is
more likely to be used by programmers instead of end
users. (ii) Due to some implementation issues, SyncFinder
still misses 1-3 ad hoc synchronizations. Eliminating
them would require further enhancement to some of our
analysis (such as alias analysis, etc.) (iii) Even though
SyncFinder’s false positive rates are quite low, for some
use cases that are sensitive to false positives, program-
mers would need to manually examine the identified ad
hoc synchronization or leverage some execution synthesis
tools like ESD [49] to help identify false positives. (iv) For
our characteristic study, we can always study a few more
applications, especially of different types.
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