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Abstract the atomicity problem. On a different but related note,

Many synchronizations in existing multi-threaded provarious tools such as AVIO [27], CHESS [31], CTrig-
grams are implemented in an ad hoc way. The first pa@€r [36], ConTest [6] have been built to detect or ex-
of this paper does a comprehensive characteristic stuf¢se atomicity violations and data races in concurrent pro-
of ad hoc synchronizations in concurrent programs. Bgrams. In addition to atomicity synchronization, conditio
studying 229 ad hoc synchronizations in 12 programs ofriables and monitor mechanisms have also been studied
various types (server, desktop and scientific), includingnd used to ensure certain execution order among multiple
Apache, MySQL, Mozilla, etc., we find several interestthreads [14, 16, 22].
ing and perhapalarming characteristics: (1) Every stud-  So far, most of the existing work has targeted only the
ied application uses ad hoc synchronizations. Specificalljynchronizations implemented in a modularized way, i.e.,
there are 6-83 ad hoc synchronizations in each progragiirectly calling some primitives such as “lock/unlock” and
(2) Ad hoc synchronizations are error-prongignificant “cond.wait/condsignal” from standard POSIX thread li-
percentages (22—67%) of these ad hoc synchronizatiohgaries or using customized interfaces implemented by
introduced bugs or severe performance iss{@sAd hoc programmers themselves. Such synchronization methods
synchronization implementations are diverse and many éf€ easy to recognize by programmers, or bug detection
them cannot be easily recognized as synchronizations, iand performance profiling tools.
have poor readability and maintainability. Unfortunately, besides modularized synchronizations,
The second part of our work builds a tool callederogrammers also use their own ad hoc ways to do syn-
SyncFinderto automatically identify and annotate ad hochronizations. It is usually hard to tell ad hoc synchro-
synchronizations in concurrent programs written in C/C+-iztions apart from ordinary thread-local computations,
to assist programmers in porting their code to better strugaaking it difficult to recognize by other programmers for
tured implementations, while also enabling other tooliaintenance, or tools for bug detection and performance
to recognize them as synchronizations. Our evaluatigerofiling. We refer to such synchronizationad hoc syn-
using 25 concurrent programs shows that, on averag@)ronization If a program defines its own synchronization
SyncFinder can automatically identify 96% of ad hoc synprimitives as functional calls and then uses these funstion
chronizations with 6% false positives. throughout the program for synchronization, then we do
We also build two use cases to leverage SyncFindem®t consider these primitives as ad hoc, since they are well
auto-annotation. The first one uses annotation to detecidularized.
deadlocks (including 2 new ones) and 16 potential issuesAd hoc synchronization is often used to ensure an in-
missed by previous analysis tools in Apache, MySQL antgnded execution order of certain operations. Specifi-
Mozilla. The second use case reduces Valgrind data rag@lly, instead of calling“conahvait()” and “condsignal()”

checker’s false positive rates by 43—-86%. or other synchronization primitives, programmers often
usead hoc loopgo synchronize with some shared vari-

i ables, referred to async variables According to pro-
1 Introduction grammers’ comments, they are implemented this way due
Synchronization plays an important role in concurrent prato either flexibility or performance reasons.
grams. Recently, partially due to realization of multi- Figure 1(a)(b)(c)(d) show four real world examples
core processors, much work has been conducted on syi-ad hoc synchronizations from MySQL, Mozilla, and
chronization in concurrent programs. For example, vari©penLDAP. In each example, a thread is waiting for some
ous hardware/software designs and implementations havther threads by repetitively checking on one or more
been proposed for transactional memory (TM) [37, 13, 3Ghared variables, i.e. sync variables. Each case has its own
40] as ways to replace the cumbersome “lock” operationspecific implementation, and it is also not obviously appar-
Similar to TM, some new language constructs [46, 7, 12nt that a thread is synchronizing with another thread.
such as Atomizer [12] have also been proposed to addresdUnfortunately, there have been few studies on ad hoc



/* “wait for the other guy finish
(not efficient, but rare)” */
while (crc_table_empty );

for (deleted=0; ;) {
THREAD_LOCK(..., dbmp->mutex);
/* wait for other threads to release their

/* wait for operations on tables from other threads*/
new_activity_counter =0;
background_loop:

write_table(.., crc_table[0]); references to dbmfp */
if (dbmfp->ref ==1) {
if (F_ISSET(dbmfp, MP_OPEN_CALLED))
TAILQ_REMOVE(&dbmp->dbmfq, ..);

deleted = 1;

tables_to_drop = drop_tables_in_background();

if(tables_to_drop > 0)
os_thread_sleep(100000);

while(n_pages_purged) {

/* MySQL */
(a) direct spinning

[* wait until some waiting threads enter */

while(group->waiter->count == 0) {

log_buffer_flush_to_disk();
}
/* new activities come in, go active and serve */
if(new_activity_counter > 0)
goto loop;
else goto background_loop;

}
[* abort if the group is not running */ THREAD_UNLOCK(..., dbomp->mutex);

if(group->state != _prmw_running) {
PR_SetError(..);
goto aborted;
} }
} I* Mozilla */
(b) multiple exit conditions

if (deleted) break;
__os_sleep(dbenv, 1, 0);

/* OpenLDAP */
(c) control dependency

/* MySQL */
(d) useful work inside waiting loop

Figure 1:Real world examples of ad hoc synchronizationsSync variables are highlighted using bold fonts. Exama)edirectly
spins on the sync variable; (b) checks more than one synahlas, (c) takes a certain control path to exit after cherkirsync
variable, (d) performs some useful work inside the waitiogp.

synchronization. It is unclear how commonly it is used, Apps. #ad hoc sync| #buggy sync
how programmersimplement it, what issues are associated Apache 33 7 (22%)
with it, whether it is error-prone or not. OpenLDAP 15 10 (67%)
Cherokee 6 3 (50%)
1.1 Contribution 1: Ad Hoc Synchroniza- Mozilla-js 17 > (30%)
Transmissior] 13 8 (62%)

tion Study

] . o Table 1: Percentages of ad hoc synchronizations that had
In the first part of our work, we conduct a *forensic invesniroduced bugs according to the bugzilla databases and

tigation” of 229 ad hoc synchronizations in 12 concurren¢hangelogs of the applications.
programs of various types (server, desktop and scientific),

including Apache, MySQL, Mozilla, OpenLDAP, etc. Thechanged the states or not. Such characteristic may par-

goal of our study is to understand the characteristics anghly explain why programmers use ad hoc synchroniza-

implications of ad hoc synchronization in existing concurtjons. More discussion and examples are in Section 2.
rent programs.

Our study has revealed several interestadgrmingand
guantitative characteristics as follows:

(3) Ad hoc synchronizations are error-praneTable 1
shows that among the five software systems we studied,
) signficant percentages (22-67%) of ad hoc synchroniza-
(1) Every studied concurrent program uses ad hoc SyRinns introduced bugs. Although some experts may expect
chronization More specifically, there are 6-83 ad hocgych results, our study is among the first to provide some
synchronizatiops implemented using ad hoc loops in ea‘éﬂjantitative results to back up this observation.

of the 12 studied programs. The fact that programmers aq hoc synchronization can easily introduce deadlocks
often use ad hoc synchronization is likely due to two prig, hangs. As shown on Figure 2, Apache had a deadlock in
mary reasons: (i) Unlike typical atomicity synchronizaune of its ad hoc synchronizations. It holds a mutex while
tion, when coordinating execution order among thread%aiting on a sync variable “quetiafo—idlers”. Figure 3

the intended syn_chro_nization scenario may vary from ONghows another deadlock example in MySQL, which has
to another, making it hard to use a common interfacgeyer been reported previously. More details and the real
to fit every need (more discussion follows below and iRyqy|q examples are in Section 2.

Section 2); (ii) Performance concerns make some of the gecayse they are different from deadlocks caused by
heavy-weight synchronization primitives less applicable |ocks or other synchronization primitives, deadlocks in-
(2) Although almost all ad hoc synchronizations are imvolving ad hoc synchronizations are very hard to detect
plemented using loops, the implementations are diversasing existing tools or model checkers [11, 43, 24]. These
making it hard to manually identify them among the thoutools cannot recognize ad hoc synchronizations unless
sands of computation loop&or example, Figure 1(a) di- these synchronizations are annotated manually by pro-
rectly spins on a shared variable; Figure 1(b) has multgrammers or automatically by our SyncFinder described
ple exit conditions; Figure 1(c) shows the exit conditiorin section 1.2. For the same reason, it is also hard for con-
indirectly depends on the sync variable and needs coradrrency testing tools such as ConTest [6] to expose these
plicated calculation to determine whether to exit the loopdeadlock bugs during testing.

Figure 1(d) synchronizes on program states and performsFurthermore, ad hoc synchronizations also have prob-
useful work while checking whether the remote thread hdems interacting with modern hardware’'s weak memory



listener thread :
apr_thread_mutex_lock(&m);
while(Iring_empty(..)

&& expiration_time<timeout

worker thread:
apr_thread_mutex_lock(&m);

apr_atomic_inc32( queue_

&& get_worker(&idle_worker)){ info->idlers);
}
get_worker(..){

while(queue_info->idlers==0);
} /* Apache */

change log: “Never hold mutex while calling blocking operations ”

Figure 2: A deadlock introduced by an ad hoc synchro-
nization in Apache.

Hold : mutex
Wait : global_read_block (thread 3)
Thread 1
S1.1 pthread_mutex_lock(&mutex);

Hold : protect_global_read
Wait : mutex (thread 1)
Thread 2
S2.1 protect_global_read ++;

L
S2.2 pthread_mutex_lock(&mutex);
S2.3 protect_global_read --;

S1.2 while(global_read_block) {...}
S1.3 pthr7ad_mutex_unlock(&mutex);

Thread 3
S3.1 global_read_block ++;

S3.2 while(protect_global_read > 0) {...}

S3.3 global_read_block --;

Hold : global_read_block;
Wait : protect_global_read (thread 2)

/* MySQL */

Figure 3: A deadlock caused by a circular wait among

three threads (This is a new deadlock detected by our dead-

lock detector leveraging SyncFinder's auto-annotation)

Thread 2 is waiting at S2.2 for the lock to be released by
thread 1; thread 1 is waiting at S1.2 for thread 3 to decrease
the counter at S3.3; and thread 3 is waiting at S3.2 for theead

to decrease another counter at S2.3.

consistency model and also with some compiler optimiza-
loop invariant hoisting (discussed further in

tions, e.g.
Section 2).

to identify and annotate them, similar to the way that type
annotation helps Deputy [9] and SafeDrive [50] to identify
memory issues in Linux. Specifically, if ad hoc synchro-
nizations are annotated in concurrent programs, (1) static
or dynamic concurrency bug (e.g. data race and deadlock)
detectors can leverage such annotations to detect more
bugs and prune more false positives caused by ad hoc syn-
chronizations; (2) performance tools can be extended to
capture bottlenecks related to these synchronizations; (3
new programming language/model designers can study ad
hoc synchronizations to design or revise language con-
structs; (4) programmers can port such ad hoc synchro-
nizations to more structured implementations.
Unfortunately, ad hoc synchronizations are very hard
and time-consuming to recognize and annotate manu-
ally. Partly because of this, although some annotation
languages for synchronizations like Sun Microsystems’
Lock Lint [2] have been available for several years, they
are rarely used, even in Sun’s own code [35]. Further-
more, manual examination is also error-prone. Figure 4
shows a MySQL ad hoc synchronization example that we
missed during the manual identification we conducted for
our characteristic study. Fortunately, our automatic iden
tification tool SyncFinder found it. We overlooked this
example because of the complicated nested “goto” loops.

loop: /* MySQL */
if(shutdown_state > 0)

goto background_loop; -~ background_loop:

/* background operations */
if(new_activity_counter > 0)
goto loop;
else
goto background_loop;

if(shutdown_state == EXIT)
os_thread_exit(NULL)
goto loop;

By studying the comments associated with ad hoc syiFigure 4: An ad hoc synchronization missed in our manual

chronizations, we found that some programmers kneidentification process of our characteristic study but is icen-
their implementations might not be safe or optimal, butified by our auto-identification tool, SyncFinder. The inter-

they still decided to keep their ad hoc implementations. locked “goto” loops can easily be missed by manual identifica

o N . tion (Figure 1(d) shows more detailed code).
(4) Ad hoc synchronizations significantly impact the effec'— (Figure 1(d) show ' )

tiveness and accuracy of various bug detection and per- Motivated by the above reasons, the second part of our
formance tuning tools Since most bug detection toolsyork involved building a tool calle@yncFinder to auto-
cannot recognize ad hoc synchronizations, they can miggatically identify and annotate ad hoc synchronizations
many bugs related to those synchronizations, as well @ concurrent programs. SyncFinder statically analyzes
introduce many false positives (details and examples Epurce code using inter-procedural, control and data flow
Section 2). For the same reason, performance profilinghalysis, and leverages several of our observations and in-
and tuning tools may confuse ad hoc synchronizatior§ght5 gained from our study to distinguish ad hoc syn-
for computation loops, thus generating inaccurate or evethronizations apart from thousands of computation loops.
misleading results. We evaluate SyncFinder with 25 concurrent programs
including the 12 used in our characteristic study and 13
others. SyncFinder automatically identifies and annotates
96% of ad hoc synchronization loops with 6% false posi-
tives on average.

Our characteristic study on ad hoc synchronization reveals To demonstrate the benefits of auto-annotation of ad
that ad hoc synchronization is often harmful with respedioc synchronizations by SyncFinder, we design and eval-
to software correctness and performance. The first ste@te two use cases. In the first use case, we build a sim-
to address the issues raised by ad hoc synchronizationpie wait-inside-critical-section detector, which canride

1.2 Contribution 2:
Synchronizations

Identifying Ad Hoc



Total | Ad hoc Apps. #sync loopq I, | I, | both
Apache 2.2.14 Web server 228K 1462 33 ySQ
MySQL5.0.86 | Database server| 1.OM || 4265 | 83 OpenLDAP 15 S13| 2
OpenLDAP 2.4.21| LDAP server 272K || 2044 | 15 PBZip2 7 1]0]0
Cherokee 0.99.44| Web server 60K 748 6 . .
Mozllajs 0.9.1 | JS engine STaK 1848 | 17 Table 3: Ad hoc sync loops missed by human inspec-
PBZip22-1.1.1 | Parallel bzip2 3.6K 45 7 tions. Two inspectors,/, and [, investigate the same
Transmission 1.83] BitTorrentclient | 96K 11 1114 | 13 source code separately. Most of the sync loops missed
Radiosity SPLASH-2 14K 80 12 . . .
Bames SPLASHD TS a8 = by both inspectors (i.e., those in Apache and MySQL) are
Water SPLASH-2 1.5K 84 9 interlocked or nested goto loops. Others (in OpenLDAP)
Ocean SPLASH-2 4.0K 339 20 . . .
T SPLASHS 1ok 157 - are for-loops doing complicated useful work and checking

Table 2: The number of ad hoc synchronizations in concur- synchronization condition in it, like one in Figure 1(d).

rent programs we studied. Ad hoc sync is implemented with o ) S
an ad hoc loop using shared variables (i.e., sync variabiés)  t/desktop concurrent applications as well as five scientific
applications from SPLASH-2, all written in C/C++, one of

tify deadlock and bad programming practices involving ad'€ Popular languages for concurrent programs. These ap-
hoc synchronizations. In our evaluation, our tool deteciRlications are well representative of server, client/desk
five deadlocks that are missed by previous deadlock detd@sed and scientific applications, three large classes of
tion tools in Apache, MySql and Mozilla, and, moreoverconcurrent programs.
two of the five are new bugs and have never been reportedl" terms of our examination methodology, we have ex-
before In addition, even though some(16) of the detecte@Mined almost every line of code including programmers’
issues are not deadlocks, they are still bad practices af@mments. This was animmensely time consuming effort
may introduce some performance issues or future deaffit took three months of our time. To ensure correctness,
locks. The synchronization waiting loop inside a criticafh® process was repeated twice, each time by a different
section protected by locks can potentially cause cascadiggthor. Furthermore, we were also quite familiar with the
wait effects among threads. exami_ned applications, sjnce we hgve modifi(_ad and used
As the second use case, we extend the Valgrind [38§]€m in many of our previously published studies.
data race checker to leverage the ad hoc synchronizatiorOVverall, while we cannot draw any general conclusions
information annotated by SyncFinder. As a result, Valthat can be applied to all concurrent programs, we believe
grind’s false positive rates for data races decrease by 4§18t our study does capture the characteristics of synchro-
86%. This indicates that even though SyncFinder is not®§zations in three large important classes of concurrent ap
bug detector itself, it can help concurrency bug detectoRdications written in C/C++.

improve their accuracy by providing ad hoc synchroniza,:inding 1: Every studied application uses ad hoc syn-

tion information. chronizations. More specifically, there are 6-83 ad hoc
synchronizations in each of the 12 studied programs.

As shown in Table 2, ad hoc synchronizations are used in
all of our evaluated programs, and some programs (e.g.

ySQL) even use as many as 83 ad hoc synchronizations.
is indicates that, in the real world, it is not rare for pro-

2 Ad Hoc Synchronization Characteristics
To understand ad hoc synchronization characteristics,
have manually studied 12 representative applications
three types (server, desktop and scientific/graphic), a dh hronizati in thei

shown on Table 2. Two inspectors separately investigat ﬁ?prroe;atr?]:se ad hoc synchronizations in their concur-

almost every line of source code and compared the resuffe P! 0
with each other. As shown on Table 3, in our initial study While we are not 100% sure why programmers use ad

we missed a few ad hoc synchronizations, most of whiclﬂOC synchronizations, after studying t.he code and com-
ents, we speculate there are two primary reasons. The

are those implemented using interlocked or nested g(j_g tis b th di hronizati ds t
loops (e.g., the example in Figure 4). Fortunately, o Irst is because there are diverse synchronization needs to

automatic identification tool, SyncFinder, discovers themensure e>_<eCl_Jt|on order among threads. Unlike atomicity
nchronization that shares a common goal, the exact syn-

and we were able to extend our manual examination to ir?r/lronization scenario for order ensurance may vary from
clude such complicated types. y vary

one to another, making it hard to design a common inter-
Threats to Validity.  Similar to previous work, charac- face to fit every need (more discussion in Finding 2).
teristic studies are all subject to the validity problem- Po The second reason is due to performance concerns on
tential threats to the validity of our characteristic stalg  synchronization primitives, especially those heavyweigh
the representativeness of applications and our examimationes implemented as system calls. If the synchronization
methodology. To address the former, we chose a variety obndition can be satisfied quickly, there is no need to pay
concurrent programs, including four servers, three clierthe high overhead of context switches and system calls.



Total || Total Single exit condition Multiple exit cond. | Total
Apps. sC sC sC SsC mc | mcC async sc :single exit cond.
loops|| Ad hoc| -dir | -df | -cf | -func | ©%@ | _ail |-Nall ol | e ar SE"; g,?ce ool o
Apache | 1462 33 4 0 1 3 8 22 3 25 16 25 -df: has data
MySQL |4265|] 83 | 23 | 5 | 4 | 11 | 43 | 13 | 27| 40 32 | 64 | . tependency
Open LDAP 2044 15 2 O O 2 4 4 7 11 9 15 dependency
Cherokee | 748 6 0 2 0 1 3 0 3 3 1 5
- - mc : multiple exit cond.
Mozilla-js | 848 17 2 4 1 4 10 4 1 5 5 15 -all: all exit conditions
PBZip2 45 7 0 0 0 1 1 0 6 6 7 7 depend on sync vars
Transmissioh1114]| 13 | 6 | 0 | 0 | 1 7 0|6 6 3 [ 2 | Nelinotal butatieast
Radiosity | 80 12 5 5 1 0 11 1 0 1 0 1 _
Bames | 88 || 7 | 6 | 1| 0| 0 | 7 [0 ][O0 0 0 | 0 | e i puerpocechra
Water 84 9 9 0 0 0 9 0 0 0 0 0 async: useful work while
Ocean 339 20 20 0 0 0 20 0 0 0 0 0 waiting
FFT 57 7 7 0 0 0 7 0 0 0 0 0

Table 4:Diverse ad hoc synchronizations in concurrent programs wetsdied. (i) The number of exit conditions in synchroniza-
tion loops are variouss¢ vs. my; (ii) There can be multiple, different types of dependersiations between sync variables and loop
exit conditions {dir, -df, -cf, -fung; (iii) Some synchronization loops do useful work with aslronous condition checkinggyng.

while(1) {
int oldcount = (global->barrier).count ; /* wait for the next block from Bool queue::getData(ElemPtr &fileData) {
a producer queue */ ElemPtr &headElem = gData[head] ;
If(updatedcount == oldcount) break; safe_mutex_lock(fifo->mut);

} I+ SPLASH2 #/ || for(:) { /* search gData to find the requested

| -
I( 'qS:Ll:Z-:eglgtgtj(glsata) ) block. If finds out, return true;
a 9 otherwise, return false */

int finished = 0; break;
for(i=0;i< 1000 && ! finishm } } /* PBZip2 */
if(global->pbar_count >= n_proc)
finished = 1;
} /* Radiosity*/
(b) mc-Nall (some are local exit conditions) (c) Function call

(a) sc-df (data dependency)

Figure 5: Examples of various ad hoc synchronizationsA sync variable is highlighted using a bold font. An arrow wisathe
dependency relation from a sync variable to a loop-exit @@ The examples of other ad hoc categories are shownguréil.

Such performance justifications are frequently mentionecbnditions are satisfied by remote threads. In the other

in programmers’ comments associated with ad hoc syfeops (referred to asnc.Nall), there are also somecal

chronization implementations. exit conditions such as time-outs, etc., that are indepen-
While ad hoc synchronizations are seemly justified, ardent of remote threads and can be satisfied locally.

they really worthwhile? What are their impact on pro-

gram correctness and interaction with other tools? Cali) Dependency on sync variablesThe simplest ad hoc

they be expressed using some common, easy-to-recognf¥@chronization is just directly spinning on a sync vargabl

synchronization primitives? We will dive into these ques@S shown on Figure 1(a). In many other cases (50-100%

tions in our finding 3 and 4, trying to shed some lights int®f ad hoc synchronizations in a program), exit conditions

the tradeoffs. indirectly depend on sync variables via data dependencies
(referred to agf, Figure 5(a)), control dependencies (re-
Finding 2: Ad hoc synchronization is diverse. ferred to asf, (Figure 1(c)), even inter-procedural depen-

Table 4 further categorizes ad hoc synchronizations frogencies (referred to danc, Figure 5(c)).

several perspectives. Some real world examples for each

category can be found in Figure 1 and Figure 5. (iif) Asynchronous synchronizations (referred as async)
(i) Single vs. multiple exit conditionsSome ad hoc syn- [N some cases (77% of ad hoc synchronizations in
chronization loops have only one exit conditibn We ~Server/desktop applications we studied), a thread does
call such sync loopsc loops. Unfortunately, many oth- Nt just wait in synchronization. Instead, it also per-
ers (up to 86% of ad hoc synchronizations in a progranprms some useful computations while repetitively check-
have more than one exit condition. We refer to them a89 Sync variables at every iteration. For example, in Fig-
mcloops. In some of them (referred to mall), all exit ~ Ure 1(d), @ MySQL master thread does background tasks
like log flushing until a new SQL query arrives (by check-
LA condition that can break the execution out of a loop. ing new activity_countej.




/* get tuple Id of a table */
do {
ret= m_skip_auto_increment ?
readAutoincrementValue(...):
getAutolncrementValue(-++);
} while(ret== -1 && --retries && ..);

for (1) {

if (m_skip_auto_increment &&

readAutoincrementValue(...)

|| getAutolincrementValue(...){

if (--retries && ...) {
my_sleep(retry_sleep);
continue;  /x 30 ms sleep

} for transaction */

Comment examples

Programmers are aware of better design but still
use ad hoc implementation (8%)

/* This can be built insmarter way, like pthreadond
but we do it since the status can come from.. */
/* By doing.. applications will gebetter performance and

} break;

avoid the problem entirelyRegardless, we do this.
because we'd rather write error message in this routing, |.*

Programmers try to prevent bugs at the first place (229
/* We could end upspinning indefinitely with a situation
where.. The ‘i++ stops the infinite loop */ /* We can safely
wait here in the case.. without fear déadlock because we
made.. */ /* This spinning actually isn’'t necessary except
when thecompiler does corrupt 64bit arithmetic.. */

Programmers explicitly state their sync assumptions (75%)
* GC doesn't set the flag until it has waited falt active

*MySQL */ ||}

Figure 6:An ad hoc synchronization in MySQL was revised
by programmers to solve a performance problem.

Finding 3: Ad hoc synchronizations can easily intro-
duce bugs or performance issues.
After studying the 5 applications listed in Table 1, we
found that 22-67% of synchronization loops previously
introduced buQ.S or performance issues. These high ISS. requests to end/ /* We must break the waiif one of the
rates are alarming, and, as a whole, may be a strong SIOR. owin D e N
g occurs: i).. ii).. iii).. iv).. v).. */

that programmers should stay away from ad hoc synchre-
nizations. Table 5: Observations in programmers’ comments on ad

For each ad hoc synchronization loop, we use its corréoc synchronization from Apache, Mozilla, and MySQL We
Sponding file and function names to find out in the Sourcgudy 63 comments associated with ad hoc SynChroniZationS.
code repository if there was any patch associated with it.
If there is, we manually check if the patch involves the aghould avoid such optimizations on sync variables, and
hoc sync loop. We then uses this patch’s information tensure that waiting loops always read the up-to-date val-
search the bugzilla databases and commit logs to find ales instead of the cached values from registers. As a
relevant information. By examining such information agvorkaround, programmers may need to use wrapping vari-
well as the patch code, we identify whether the patch is@ble accesses with function calls [3]. All of these just
feature addition, a bug not related to synchronization, glomplicate programming as well as software testing and
a bug caused exactly by the ad hoc sync loop. We onfjebugging.
count the last case. Interestingly, some programmers are aware of the above

Besides deadlocks (as demonstrated in Figure 2 and 8 hoc synchronization problems but still use them. We
ad hoc synchronization can also introduce other types &tudy the 63 comments associated with ad hoc synchro-
concurrency bugs. In some cases, an ad hoc synchronifézations in MySQL, Apache, and Mozilla. As illustrated
tion fails to guarantee an expected order and lead to a craghTable 5, programmers sometimes mentioned better al-
because the exit condition can be satisfied by a third thregrnatives, but they still chose to use their ad hoc imple-
unexpectedly. Due to space limitations, we do not shoWentations forflexibility. In some cases, they explicitly
those examples here. indicated their preference for tHightness and simplicity

In addition to bugs, ad hoc synchronizations can als@f @d hoc spinning loops, especially when the synchro-
introduce performance issues. Figure 6 shows such an d}zations were expected to rarely occur or rarely need to
ample. In this case, the busy wait can waste CPU cycl&4it long. Also, programmers often explicitly stated their
and decrease throughput. Therefore, programmers revisagsumptions/expectation in comments about what remote
the synchronization by adding a sleep inside the loop. threads should do correspondingly, since ad hoc synchro-

Ad hoc synchronizations also have problematic interadlizations are complex and hard to understand.
tions with modern hardware’s relaxed consistency mod-inding 4: Ad hoc synchronizations can significantly
els [5, 28, 45]. These modern microprocessors can reordefpact the effectiveness and accuracy of concurrency
two writes to different locations, making ad hoc synchrobug detection and performance profiling tools.
nizations such as the one in Figure 1(a) fail to guarantees mentioned earlier, since existing concurrency bug
the intended order in some cases. As such, experts r¢deadlock, data race) detection tools cannot recognize ad
ommended programmers to stay away from such ad héwoc synchronizations, they will fail to detect bugs that
synchronization implementations, or at least implemeritvolve such synchronizations (e.g. deadlock examples
synchronizations using atomic instructions instead df jushown on Figure 2 and 3).
simple reads or writes [5, 28, 45]. In addition, they can also introduce many false posi-

To make things even worse, ad hoc synchronizatiorizves. It has been well known that most data race detectors
also have problematic interactions with compiler optiincur high false positives due to ad hoc synchronizations.
mizations such as loop invariant hoisting. ProgrammeiSuch false positives come from two sources: Benign

c




Thread 1 Thread 2 Worker Listener
#define LAST_PHASE 1  #define EXIT_THREADS 3|(S1 q_info->pools = new_recycle; S3  while(q_info->idlers == 0) {...}
loop: state = EXIT_THREADS; /
if(state < LAST_PHASE) S2  atomic_inc( &(g_info->idlers) ); S4 first_pool = g_info->pools;
goto loop; /* MySQL */ /* Apache */
(a) Benign data race on state (b) False data race on g_info->pools

Figure 7:False positives in Valgrind data race detection due to ad hosynchronizations.

data races on sync variabletypically an ad hoc synchro- the diverse synchronization needs as well as the perfor-
nization is implemented via an intended data race on symeance requirements, as discussed in Finding 1.
variables. Figure 7(a) shows such a benign data race re-
orted by Valgrind [33] in MySQL. (2False data races . cpe e
tphat Wou)lld neg\l/er e>£ec]ute inyparalle(l d]ze to the executio‘ﬁ Ad hoc Synchronization Identification
order guaranteed by ad hoc synchronizatiof®er exam- 3.1  Qverview
ple, in Figure 7(b), the two threads are synchronized at S2
and S3, which guarantees the correct order between S1 &gl ad hoc synchronizations have raised many challenges
S4's accesses tg.info—pools S1 and S4 would never andissues related to correctness and performance, it would
race with each other. However, most data race checkd?§ useful to identify and annotate them. Manually doing
cannot recognize this ad hoc synchronization and, as a #8is is tedious and error-prone since they are diverse and
sult, incorrectly report S1 and S4 as a data race. hard to tell apart from computation. Therefore, the second
Synchronization is also a b|g performance and Sca|@art of our work builds a tool called SynCFinder to auto-
bility concern because time waiting at synchronization ighatically identify and annotate them in the source code of
wasted. Unfortunately, existing work in synchronizatiorfoncurrent programs. The annotation can be leveraged in
cost analysis [25, 32] and performance profiling [29] canseveral ways as discussed in Section 1.2.
not recognize ad hoc synchronizations, and therefore theThere are two possible approaches to achieve the above
synchronizations can easily be mistaken as computatig@al- One is dynamic and is done by analyzing run-time
As a result, the final performance profiling results mayjraces. The other approach is static, involving the anslysi

cause programmers to make less optimal or even incorredit source code. Even though the dynamic approach has
decisions while performance tuning. more accurate information than the static method, it can

_ _ o o i incur large (up to 30X [27]) run-time overhead to collect
Replacing with synchronization primitives. — Ourfind-  memory access traces. In addition, the number of ad hoc
ings above reveal that ad hoc synchronization is oftegynchronizations that can be identified using this method
harmful in several respects. Therefore, it is desirablgoyq largely depend on the code coverage of test cases.
that programmers use synchronization primitives SUCR|so some ad hoc synchronization loops may terminate
as condwait, rather than ad hoc synchronization. Figiter only one iteration, making it hard to identify them as
ure 8 shows how ad hoc synchronization can be replacgd hoc synchronization loops [18]. Due to these reasons,
with a well-known synchronization primitive, POSIX e choose the static method, i.e., analyzing source code.
pthreadcondwait(). Note that it may not always be e piggest challenge to automatically identify ad hoc
straightforward to use existing sync_hronlzatmn primesv _synchronizations is how to separate them from computa-
to replace all ad hoc synchronizations, because existifgg, |oops. The diversity of ad hoc synchronizations makes
synchronization primitives may not be sufficient to meej; ggpecially hard. To address the above challenge, we have

to identify the common elements among various ad hoc

* “wait for the other guy to finish | [while(1) { synchronization implementations.
(not efficient, but rare)” */ int oldcount = (global->barrier).count; . . )
while (crc_table_empty ); - Commonality among ad hoc synchronizationsinterest-
wite_able(out, cre_tablefo): ||, (updatedeaunt == oldaun) break ingly, ad hoc synchronizations are all implemented using
il iml L
N~ N~ . .
pihread_mutex_lock(&muiex); | [ptvead_mutex_lock(@mutex) loops, referred to async loopqFigure 9). While a sync
i while . ape
e o a_var.| | int oidcount = (golbal->barrier).count; loop can have many exit conditions, at least one of them
fmute); if{updatecount == oldcount) break; is the exit condition to be satisfied when an expected syn-
pthread_mutex_unlock(&mutex); || | pthread_cond_wai(@cond_var, &mutex): chronization event happens. We refer to such exit condi-
write_table., cre_table[0]: pihread_mutex_unlock(&mutex): tions assync conditions The sync condition directly or
(a) MySQL (b) SPLASH2

indirectly depends on a certain shared variable (referred
Figure 8: Replacing ad hoc synchronizations with synchro- asa sync variablgthat is loop-invariant locally, and mod-
nization primitives using condition variables. (a) shows the ified by a remote thread.

re-implementation of ad hoc synchronization in Figure ;1(B) Note that a sync variable may not necessarily be directly
is for Figure 5(a). used by a sync condition (e.g., inside a while loop condi-



,_T dependency tracking
E

Loop p | Exit condition $| Exit depe?nder_lt_var_iable > “ﬂ%’gﬁ@gﬂ?ﬁn}’%gzgﬁ’ Synphroni;atipn
detection extraction (EDV) identification and condvar loop pair identification
runin
a loop an exit condition leaf-EDVs P g sync loop

Annotation Identified sync pairs,
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Figure 10:SyncFinder design to automatically identify and annotate d hoc synchronization

flag : Synchronization variable, W flag :Synchronization write both of which can be |everaged by SyncFinder’s data-,
T1 T2 TL T2 and control-flow analysis. In addition, SyncFinder also
sync. sync. R flag uses LLVM’s Iqopinfo a_nalysi_s, alias analysis, and con-
loop CR flag__‘__, Wilag  loop ~. stant propagation tracking to implement the ad hoc sync
compu- | W 29 loop identification algorithm. SyncFinder annotation is
tation done via the static instrumentation interfaces provided in
LLVM. In the rest of this section, we focus on our algo-
(&) spinning (b) asynchronous checking rithms and do not go into details about the basic analysis

Figure 9: Ad hoc synchronization abstract model. The loop provided by LLVM.

exit condition (i.e., sync condition) either directly ordinectly
depends on a sync variable.

3.2 Finding Loops

Apps. while | for | goto | Total
tion). Instead, a sync condition may have data/control- Q?E‘%f g; 244 226 gg
dependency on it like in the examples shown on Fig- OpenLDAP 7 Z Z 5
ure 1(c) and Figure 5(a)(c). Mozilla-js 12 ]4] 1 17

Following the above characteristic, SyncFinder Stan‘?able 6L hani dF lworld ad h
from loops in the target programs, and examines their ex| ' 0 -0Op mechanisms used for rearworid a oc’:syn- ,

- . . . . chronization. There are a non-negligible number of "goto
cpndmons_to |_dent|fy those that are (1) loop !nvarlano, (2|00pS, which often complicate loop analysis (e.g., Figyee 4
directly or indirectly depend on a shared variable, and (3)
can be satisfied by a remote thread’s update to this vari-AS shownin Table 6, ad hoc synchronizations are imple-
able. By checking these constraints, SyncFinder filters oftented using three primary forms of loops: “while”, “for”
most computation loops as shown in our evaluation. ~ @nd “goto”. Fortunately, LLVM's loopinfo pass identifies

Checking all of the above conditions requirell those loops based on back edgesin LLVM IR.
SyncFinder to conduct (1) program analysis to know For each loop identified by LLVM, SyncFinder extracts
the exit conditions for each loop; (2) data and control flovits €xit conditions. Specifically, it identifies the basic
analysis to know the dependencies of exit condition®locks with at least one successor outside of the loop, then
(3) some static thread ana'ysis to Conservative|y identif&pr eaCh |dent|f|ed baSiC blOCk, SynCFinder extracts |t‘5 ter
what Segment of code may run Concurrenﬂy; and (4) Sorrminator instruction, from which SynCFinder can |dent|fy
simple satisfiability analysis to check whether the remotde branch conditions. Such conditions are the exit con-
update to the sync variable can satisfy the sync conditiofitions for this loop. SyncFinder represents the exit con-

As shown on Figure 10, SyncFinder consists of the folditions in a canonical form: disjunction (OR) of multiple
lowing steps: (1) Loop detection and exit condition exconditions, and examines each separately.
traction; (2) Exit dependent variable (EDV) identificatjon ~ In addition, since LLVM does not keep the loop context
(3) Pruning computation and condvar loops based on chdpformation, e.g., loop headers and bodies, across func-
acteristics of EDVs; (4) Synchronization pairing to pair arfions, SyncFinder keeps track of them into its own data
identified sync loop with a remote update that would breagtructure and uses them throughout the analysis.
the program out of this sync loop; (5) Final result reporting
and annqtation_ in th_e target program’s source code. 3.3 Identifying Sync Loops

SyncFinder is built on top of the LLVM compiler in-
frastructure [23] since it provides several useful basic fe The key challenge of SyncFinder is to differentiate sync
tures that SyncFinder needs. LLVM's intermediate reprdoops from computation loops. To address this challenge,
sentation (IR) is based on single static assignment (SSA&yncFinder examines the exit conditions of each loop by
form, which automatically provides a compact definition-going through the following steps to filter out computation
use graph and control flow graph for every functionloops.



initial _, | data/ctrl flow loop. Most computation loops are filtered in this phase.

EDV set anayeis Non-shared variable pruning: A sync variable should
no, yes leaf be a shared variable that can be set by a remote thread.
leat ROV @ EDVS Specifically, it should be eith lobal variable, a hea
pecifically, it should be either a global variable, a p
object, or a data object (even stack-based) that is passed to
a function (e.g., thread starter function) called by anothe
thread, which can be shared by the two threads.
Figure 11: Leaf-EDV identification. SyncFinder recursively Therefore, if an exit condition has no shared variablesin
tracks Exit Dependent Variab|es(EDVs) a|ong the data_trw.n its leaf-EDV Set, itis deleted from the IOOp’S exit conditio
flow, until it reaches a leaf-EDV. set. SyncFinder moves to the next exit condition of this
loop. If the loop has no exit conditions left, this loop is
h pruned out as a computation loop.

summary
inter-procedure

| -
> analysis

Return/argu.
Dependent Variables

(1) Exit Dependent Variable (EDV) analysis :For eac ) )
exit condition of each loop in the target program, the first00P-variant based pruning: In almost all cases, a
step is to identify all variables that this exit conditionde SYN¢ condition is loop-invariant locally, and only a remote
pends on—we refer to them as exit dependent variablg%_read changes the reSL_JIt of the sync condition. Based on
(EDVs). If a loop is a sync loop, the sync variablest_h's observation, Sync_Flnder prunes out those e_X|t condi-
should be included in its EDVs. Note that a sync varilions that are loop-variant locally as shown on Figure 12.
able is not necessarily used in an exit condition (sync cohtiS Possible that some ad hoc synchronizations may also
dition) directly. A loop exit condition can be data/control change the sync conditions locally. In all our experiments
dependent on a sync variable. Therefore, we conduct dath 25 concurrent programs, we did not find any true ad
flow and control-flow analysis to find indirect EDVs. TheN0C synchronizations that SyncFinder missed due to this
EDV identification process is similar to static backwardPruner. Note that some exit conditions, such as expiration
slicing [48, 38, 15]. fume, are sep_a.rated as different conditions, and we exam-
SyncFinder first starts from variables directly refer.N€€achconditionseparately
enced in the exit condition. They are added into an EDV__ N
set. Then, as shown in Figure 11, it pops a variable OUtWh:Z)((T:?#(I)?L{JIe»neXt; “’vréljnim'nﬁn”(l',?'lﬁo's?{ Ip->pos);
from the EDV set, and finds out new EDVs along this vari-| free(module); _ Ip = Ip->next;
able’s data/control flow. New EDVs are inserted into thel—"efue=next J} FMoslati} ______LSPLASHy
set. It then pops another EDV from the set, and so on so (&) Loop-variant modue (b) boop-variant conltion ehecidng
forth until it reaches the loop boundary. For an EDV thafigure 12: The non-sync variables pruned out by loop--
does not depend on any other variables inside this loop, Warant based pruning. In the two computation loops, the vari-
refer them as deaf-EDV (similar to “live-in” variables). ables in italic font are shared variable leaf-EDVs.
SyncFinder maintains a separate set for leaf-EDVs. Ob- To check if an exit condition is loop variant, SyncFinder
viously, leaf-EDVs are the ones we should focus on sinc@Pplies a modification/ O D) analysis within the scope
they are not derived from any other EDVs in this loop.  Of & loop being examined. Specifically, it checks all leaf-
During the backward data/control flow tracking procesd=PVs and leaf-RDVs of this loop, and prunes out those
if the dependency analysis encounters a function who&eodified locally within this loop. The leaf-RDV summary
return value or passed-by-reference arguments affect tiedlso updated accordingly.
loop exit condition, SyncFinder further tracks the depen3) Pruning condvar loops: SyncFinder does not con-
dency via inter-procedural analysis. SyncFinder applieder condvar loops (i.e., sync loops that are associated
data- and control-flow analysis starting from the functson’With condwait primitives) as ad hoc loops as they can be
return value, and identifies Return/arguments-Depende?@sily recognized by intercepting or instrumenting these
Variables (RDVs) in the callee. Such RDVs are also adddiiimitives. As the final step of the ad hoc sync loop identi-
into the leaf-EDV set. In addition, all RDVs of this func- fication, SyncFinder checks every loop candidate to see it
tion are stored in a summary to avoid analyzing this funccalls a condwait primitive inside the loop. Loops that use
tion again for other loops. primitives are recognized as condvar loops and are thereby
To handle variable and function pointer aliasingPruned out. The names of comeait primitives(original
SyncFinder leverages and extends LLVM's alias analysRihread functions or wrappers) are provided as input to
to allow it go beyond function boundary. SyncFinder to identify convait calls.

(2) Pruning computation loops For everyexit condition 3.4 Synchronization Pairing
of a loop, SyncFinder applies the following two pruning

steps to check whether it is a sync condition. At the end)nce we identify a potential sync loop, we find the re-
if a loop hasat leastone sync condition, it is identified as mote update (referred assync writg that would “release”
a sync loop. Otherwise, it is pruned out as a computatidibreak) the wait loop. To identify a sync write, SyncFinder




@‘ﬁ{e o 250(23%2}0) igiﬁegt%) Sync_Read( &yncVar, & oopld). For the corre-
MySQL 325 | 125 (38.5%) | 110 (33.8%) sponding sync write, it inserts/ #SyncAnnot at i on:
OpenLDAP || 203 | 48(23.6%) | 8(3.9%) Sync_Wite(&yncVar, & oopld). The loopld is

Mozilla-js 83 41 (49.4%) 31 (37.3%)

used to match a remote sync write with a sync loop. Sim-
Table 7:The characteristics of writes to sync variables. In ~ llar annotations are also inserted into the target progsam’
the four sampled applications, majority of writes assignstant  bytecode to be leveraged by concurrency bug detection
values, or use simple increase or decrease operations. tools as discussed in the next section.

first collects all write instructions modifying sync varlab 4 T\wo Use Cases of SyncFinder
candidates, and then applies the following pruning steps.S Finder to-identificat b db b
Pruning unsatisfiable remote updatesd~or each remote yncrinders aufo-igentification can be used by many bug

update to the target sync variable candidate SyncFind%?t?Ction tools, performance profiling tools., concurrency
analyzes what value is assigned to this variable ai)gsjmg frameworks, program Iangugge de3|gners, etc. We
whether it can satisfy the sync condition. A complicate Uilt two use cases to demonstrate its benefits.

soluyqn to achieve th|§ functlonal!ty is tc_> use a SAT s.olver4_1 A Tool to detect bad practices

But it is too heavyweight, especially since, according to

our observations (shown in Table 7), the majority(66%r2t is considered bad practice to wait inside a critical sec-

of sync writes either assign constant values to sync val jon, as it can easily introduce deadlocks like the Apache
ables, or use simple counting operations like incremer‘?—’fampIe shown on Figure 2 and the MySQL example on

t/decrement, rather than complicated computations. Thiddure 3. Furthermore, it can result in performance is-
is because a sync variable is usually a control variable (e $H€S caused by cascading wait effects, and may introduce
status, flag, etc.) and does not require sophisticated co cadlocks in the future if programmers are not careful. As
putations a demonstration, we built a simple detector (referred to as
Therefore, instead of using a SAT solver, we use Cc)r?/yait-inside-critical-section detectbto catch these cases

stant propagation to check if this remote update would Sagr:/eraglrlg SyncC:)Fm(éijerts ?uto-a}nnqttﬁtlon of Sd hoc_l syn-
isfy the exit condition. For an assignment with a constanf1ronizations. -ur detection algorithm can be eastly in-
it substitutes the variable with the constant, and propegat egrated into any existing deadl(_)ck detection tool as well
it ill the exit condition to see if it is satisfiable or not. Fo __ 1° detTCt such p?t:e;nbousr S"T:plz dettector c_:fh_(tac_:ks ev-
increment based updates, SyncFinder treats it as “synC\?a{ sync 100p annotated by syncrinder to see ITit1s per-

> 0” since it obviously does not release the loop that igormed while holding some locks. If a sync loop is h0|d.'
waiting for an exit condition “(sync var == 0)". ing a lock, then SyncFinder checks the remote sync write

) i ] . to see whether the write is performed after acquiring the
Pruning serial pairs A sync loop and a sync write should same lock or after another ad hoc sync loop, so on and so
be able to execute concurrently. If there is a happenggrth, to see if it is possible to form a circle. If it is, the

before relation between such pair, due to thread Crefetector reports it as a potential issue: either a deadlock o
ation/join, barrier, etc, the remote write does not matcht |east a bad practice.

with the sync loop. Due to the limitation of static analysis,
currently SyncFinder conservatively prunes serial pairsr 4.2  Extensions to data race detection

lated to only thread (;reation/join. Speqifically, _Syncl%ind We also extend Valgrind [33]'s dynamic data race detec-
follows thread creation and conservatively estimates codg 1 |everage SyncFinder’s auto-identification of ad hoc
that might be running concurrently. sync loops. Valgrind implements a happens-before algo-
rithm [21] using logical timestamps, which was originally
3.5 SyncFinder Annotation based on conventional primitives including mostly lock
primitives, and thread creation/join.dannotrecognize ad
After the above pruning process, the remaining ondsoc synchronizations. As a result, it can introduce many
are identified as sync loops, along with their correfalse positives (shown in Table 12) as discussed in Sec-
sponding sync writes. All the results are stored in &on 2 and illustrated using two examples in Figure 7.
file. SyncFinder also automatically annotates in the tar- We extend Valgrind to eliminate data race false posi-
get software’s source code using LLVM static instrutives by considering ad hoc synchronizations annotated by
mentation framework. It inserts/ #SyncAnnot ati on:  SyncFinder. It treats the end of a sync loop in a similar
Sync_Loop_Begi n( & oopl d), //#SyncAnnotation: way toacondwait operation, and the corresponding sync
Sync_Loop_End( & oopl d), respectively, at the begin- write like a signal operation. This way it keeps track of
ning and end of an identified sync loop. In addithe happens-before relationship between them. We also
tion, inside the loop, it also annotates the read textend Valgrind to not consider sync variable reads and
a sync variable by inserting / #SyncAnnot ati on:  writes as data races.
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Apps. | Total|| lIdentified Sync Loops) Missed|  manual identification. For example, it successfully identi

loops|| Total | True | FP ones | fies those complicated, interlocked “goto” sync loops, as

Apache | 1462|| 17 15 2 1 shown in Figure 4.

MySQL | 4265| 48 | 42 6 3 For the 12 studied programs, SyncFinder misses a
|| OpenLDAP | 2044)] 18 | 14 4 1 few(1-3 per application) sync loops in large server/desk-
s A%hfsrce)l:\?:r Zgg 2 2 8 0 top applications. Considering the total number of loops
o Nginx —o5 T 17 T 11 1 (up to 4265) in each of these applications, such a small

BerkeleyDB | 1006(| 15 | 11 7 - miss rate does not limit SyncFln_der’s gpphf:abmty to real

BINDO 1372 5 2 1 - world programs. SyncFmdgr fql!s to identify these sync

Mozilajs | 848 16 | 11 = T loops t_)ecause of _the unav:_;ulablllty of the_ source code for
e PBZip2 a5 = = 0 0 these Ilbrary functions and inaccurate pointer alias. N
< || Transmission 1114|| 14 | 12 3 1 SyncFinder also returns a low number of false positives
2 || HandBrake | 551 || 13 | 13 0 B forall 25 programs. As showed in Table 8, Sync_F_mder has

p7zip 1594 10 9 1 - 0-6 false positives per program (i.e. a false positive réte o
wxDFast | 154 6 6 0 - 0-30%). Such numbers are quite reasonable. Program-

Radiosity | 80 12 12 0 0 mers can easily examine the reported sync loops to prune

Barnes 88 7 7 0 0 out those few false positives. Most of the false positives

Water 84 9 9 0 0 are caused by inaccurate function pointer analysis. Due to
o Ocean | 339 20 | 20 0 0 complicated function pointer alias, sometimes SyncFinder
b= FFT S7 7 7 0 0 cannot further track into callee functions to check if a tar-
g||_Cholesky | 362 || 8 8 0 - get variable (leaf-EDV) is locally modified. In these cases,
o Riy“;;j‘cer 13:31 g g 8 - SyncFinder conservatively considers the target variable a

Vorend - 5 5 o - a sync variable.

LU 38 0 0 0 -
Radix 52 || 14 | 14 0 - 5.2 Sync Loop Identification and Pruning
Total 290 | 264 26

(Ave.) (11.6)| (10.6)| (1.0) ‘ Apps. H I‘:’)%tal ‘ Exit ‘ Leaf- ‘ Aft non- | Aftloop- | Aft cond—‘

ps | cond. EDVs | -shared pr] var. pr. var pr.
Table 8: Overall results of SyncFinder: Every concurrent ngg‘f 411:‘212: g&gg 28(;?528 ;3‘7‘ 12148 52
program uses ad hoc sync loops except Bdth true ad hoc [OpenLDAP|[ 2,044 | 4,434 | 11,276 171 75 57
sync loops and false positives are showed here. For the 12 pto PBZip2 45 278 799 130 16 9

grams used in the characteristic study, the numbers of thade

hoc sync loops are also reported. They are generated by cofble 9:EDV Analysis and non-sync variable pruning After
paring with our manual checking results from the charastieri identifying leaf-EDVs for each loop, SyncFinder appliesino
study. We cannot show the numbers of missed ad hoc sync loopared, loop-variant and condvar-loop based pruning seaem
for the unseen programs in the study since we did not mandhe final results are the sync variables of the ad hoc syncsloop
ally examine them as we did for the 12 studied programs. T&0Me sync variables may be associated with a same sync loop.
show SyncFinder’s total explorgtion space, we allso showathe T show the effectiveness of sync loop identification,
tal number of loops, most of which are computation loops.eNotj, Taple 9, we test SyncFinder on some server/desktop

that the total numbers pf ad hoc sync loops are different fror’g1 plications and show the results from each of the sync
those numbers shown in Table 2 because some code (for other

platforms such as FreeBSD, etc) are not included duringdhre ¢ loop |d.ent|f|cat|on step§. From_ the total .|00p.S.IdentIerd,
pilation. SyncFinder extracts exit conditions, and identifies all-lea

EDVs (the third column in Table 9). From the leaf-EDVs,
SyncFinder prunes out non-shared variables (95% of leaf-
EDVs), and applies loop-variant based pruning, which fur-
ther prunes 80% of shared leaf-EDVs. SyncFinder then
applies the final pruning step to prune out sync variables
We evaluated SyncFinder on 25 concurrent program#)at are associated with condvar loops. The remains are
including 12 used in our manually characteristic studgync variable candidates and those loops using them are
and 13 other ones. Table 8 shows the overall result gotential sync loops.

SyncFinder on the 25 programs. On average SyncFinder

accqrately identifies 96% of ad hoc sync .Ic.)ops in the 1 .3 Synchronization Pairing and Pruning

studied programs and has a 6% false positive rate overall.

SyncFinder successfully identified diverse ad hoc ordéduring synchronization pairing, SyncFinder applies two
synchronizations, including those we missed during oyruning schemes, unsatisfiable remote update pruning and

5 Evaluation

5.1 Effectiveness and Accuracy
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Apps. Initial w/ Remote | w/ Serial | With True
‘ H pairs | update pr. ‘ pair pr. ‘ both H pairs ‘ 6 Related Work
Apache 27 22 27 22 21
O'V'gflgip igé igj 1‘7‘2 ﬁé 19263 Spin and hang detection Some recent work has been
’;BZipZ 9 5 T 3 3 proposed in detectingimplespinning-based synchroniza-

tions [32, 25, 18]. For example, [25] proposed some new
Table 10:False synchronization pair pruning. Note that the hardware buffers to detect spinning loops on-the-fly. [18]
numbers shown here are synchronizatfmirs. In all the other  g|so provides similar capability but does it in software.
results, we show “synchronization loops” (regardless haany  Both can detect only simple spinning loops, i.e. those sync
sefting statements for an ad hoc sync loop) loops with only one single exit condition and also directly
depend on sync variables (referred as “sc-dir” in Table 3
Sfh Section 2). As shown in Table 3 such simple spinning

. . : ; . %E)ps account for less than 16% of ad hoc sync loops on
tions in Table 9. First, remote update based pruning el'mijerage in server/desktop applications we studied.

nates 51.8% of false sync pair candidates on average. It ISgesides. both of them are dynamic approaches and
especially effective on Apache, since the majority of Synﬁwereby Sl.,lffer from the coverage limitation of all dy-

W'f“es are just simpl_e assignments with constantvalues_,ggmic approaches (discussed in Section 3). In contrast,
it is easy to determine whether such values would satis yncFinder uses a static approach and can detect various

thescorre;pc;]ndlr;fg sync exit cc])cndlt!o;'ls. : inad (%)es of ad hoc synchronizations. Additionally, we also
ecol_n ’t't € eh ectlvten_e?s 0 \‘7\%'_? R{a'r prunlngt elpen nduct an ad hoc synchronization characteristic study.
on application characteristcs. i€ 1t prunes out aimo ynchronization annotation Many annotation lan-

all false ppsitiv_es_ in simple d_esk_top/scientific Programy,,ages [4, 2, 1, 41] have been proposed for synchroniza-
(er.]g., PBZ'pi)’ It IS Iess.eﬁectlve n Szrvgrs like r?pﬁch ions in concurrent programs. Unfortunately, annotation
where many function pointers are used. Due to the limitgg , frequently used by programmers since it is tedious.

tion of function pointer analysis, it is hard to know in aIIS ncFinder is complementary to these work by providing
cases whether two certain regions cannot be concurrenf, - atic annotation for ad hoc synchronizations

To be conservative, SyncFinder does not prune the palés

L . gncurrent bug detection tools Much research has been
inside such regions. Fortunately, the remote update basgond cted on concurrency bug detection [47, 20, 31, 6
pruning helps filtering them out. u u y bug ! » 20, 31,6,

17, 11, 43]. These tools usually assume that they can
recognize all synchronizations in target programs. As we

5.4 Two Use Cases: Bug Detection demonstrated using deadlock detection and race detection,
SyncFinder can help these tools improve their effective-
[ Apps. [[ Deadlock (New) | Bad practice | ness and accuracy by automatically annotating ad hoc syn-
Apache 1(0) 1 : . -
MySOL 22 e chromzaFlons that are hard er them to rec_ogmze.
Mozilla 2(0) 2 Transactional memory Various transactional memory

designs have been proposed to solve the programmaubility
issues related to mutexes [39, 30, 19, 44] and also con-
Table 11 shows that osimpledeadlock detector (leverag- dition variables [10]. Our study complements such work
ing SyncFinder’s ad hoc synchronization annotation) desy providing ad hoc synchronization characteristics in rea
tects five deadlocks involving ad hoc order synchronizaworld applications.

tions, including those shown in Figure 2 and Figure 3Software bug characteristics studies Several studies
Previous tools would fail to detect these bugs since thdyave been conducted on the characteristics of software
cannot recognize ad hoc synchronizations. Besides dedglgs [8, 42, 34], including one of our own [26] on con-
locks, our detector also reports 16 bad practices, i.e.-waiurrency bug characteristics. This paper is different from
ing in a sync loop while holding a lock, which could raisethose studies by focusing on ad hoc synchronizations in-
performance issues or cause future deadlocks. stead of bugs, even though many of them are prone to in-
troducing bugs. The purpose of this paper is to raise the

Table 11:Deadlock and bad practice detection

Apps. Original | Extended | %Pruned . .

‘ H Valgrind | Valgrind ‘ awareness of ad_hoc synchronlzatlo_ns, and to warn pro-
Apache 30 17 3% grammers to avoid them when possible. Also we devel-
MySQL 25 10 60% oped an effective way to automatically identify those ad

OpenLDAP 7 4 43% h h izati inl fit
Water =5 T B5% oc synchronizations in large software.

Table 12:False positive reduction in Valgrind 7 Conclusions and Limitations

Table 12 shows that SyncFinder auto-annotation cou’fiI this paper, we prowdeq a_qua_mutauve characteristics
tudy of ad hoc synchronization in concurrent programs

reduce the false positive rates of Valgrind data race dete? X . . . )
tor by 43-86% P g and built a tool called SyncFinder to automatically identif

12



and annotate them. By examining 229 ad hoc synchronizgrant, NSF CNS-1001158 (career award) and Intel Grant.

tion loops from 12 concurrent programs, we have found

several interesting and alarming characteristics. Amongaferences

them, the most important results include: all concurrent
programs have used ad hoc synchronizations and their inil]
plementations are very diverse and hard to recognize man-
ually. Moreover, a large percentage (22-67%) of ad hod?2]
loops in these applications have introdubeds or perfor-
mance issuesThey also greatly impact the accuracy and
effectiveness of bug detection and performance profilind3]
tools. In an effort to detect these ad hoc synchronizations,
we developed SyncFinder, a tool that successfully identi-
fies 96% of ad hoc synchronization loops with a 6% false)
positive rate. SyncFinder helps detect deadlocks missed
by conventional deadlock detection and also reduce data
race detector’s false positives. Many other tools and refs]
search projects can also benefit from SyncFinder. For ex-
ample, concurrency testing tools (e.g., CHESS [31]) can
leverage SyncFinder’s auto-annotation to force a conte
switch inside an ad hoc sync loop to expose concurren(j/%
bugs. Similarly, performance tools can be extended to pro-
file ad hoc synchronization behavior.

All work has limitations, and ours is no exception: (i)
SyncFinder requires source code. However, this may nof’
significantly limit SyncFinder’s applicability since it is
more likely to be used by programmers instead of end
users. (ii) Due to some implementation issues, SyncFindqg]
still misses 1-3 ad hoc synchronizations. Eliminating
them would require further enhancement to some of our
analysis (such as alias analysis, etc.) (iii) Even though
SyncFinder’s false positive rates are quite low, for some
use cases that are sensitive to false positives, progran[?
mers would need to manually examine the identified ad
hoc synchronization or leverage some execution synthesis
tools like ESD [49] to help identify false positives. (iv)iFo 10
our characteristic study, we can always study a few more
applications, especially of different types.

(11]
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