

Efficient System-Enforced
Deterministic Parallelism

Amittai Aviram, Shu-Chun Weng,
Sen Hu, Bryan Ford

Decentralized/Distributed Systems Group,
Yale University

http://dedis.cs.yale.edu/

9th OSDI, Vancouver – October 5, 2010

http://dedis.cs.yale.edu/

Pervasive Parallelism

CPU

RAM

I/O

Uniprocessor

CPU

RAM I/O

CPU

Multiprocessor

Core Core
Core Core

Core Core
Core Core

Core Core
Core Core

Core Core
Core Core

RAM RAM

RAM

I/O

RAM

I/O

Multicore

RAM RAM

RAM

I/O

RAM

I/O

“Many-core”

Industry shifting from “faster” to “wider” CPUs

Today's Grand Software Challenge

Parallelism makes programming harder.

Why? Parallelism introduces:
● Nondeterminism (in general)

– Execution behavior subtly depends on timing

● Data Races (in particular)
– Unsynchronized concurrent state changes

→ Heisenbugs: sporadic, difficult to reproduce

Races are Everywhere

x = 2x = 1

Write/Write

y = xx = 2

Read/Write

● Memory Access

● File Access

● Synchronization

● System APIs

rename()open()

lock;
 x *= 2;
unlock;

lock;
 x++;
unlock;

malloc()
→ ptr

malloc()
→ ptr

open()
→ fd

open()
→ fd

Living With Races

“Don't write buggy programs.”

Logging/replay tools (BugNet, IGOR, …)
● Reproduce bugs that manifest while logging

Race detectors (RacerX, Chess, …)
● Analyze/instrument program to help find races

Deterministic schedulers (DMP, Grace, CoreDet)
● Synthesize a repeatable execution schedule

All: help manage races but don't eliminate them

Must We Live With Races?

Ideal: a parallel programming model in which
races don't arise in the first place.

Already possible with restrictive languages
● Pure functional languages (Haskell)
● Deterministic value/message passing (SHIM)
● Separation-enforcing type systems (DPJ)

What about race-freedom for any language?

Introducing Determinator

New OS offering race-free parallel programming
● Compatible with arbitrary (existing) languages

– C, C++, Java, assembly, …

● Avoids races at multiple abstraction levels
– Shared memory, file system, synch, ...

● Takes clean-slate approach for simplicity
– Ideas could be retrofitted into existing Oses

● Current focus: compute-bound applications
– Early prototype, many limitations

Talk Outline

✔ Introduction: Parallelism and Data Races
● Determinator's Programming Model
● Prototype Kernel/Runtime Implementation
● Performance Evaluation

Determinator's Programming Model

“Check-out/Check-in” Model for Shared State

1.on fork, “check-out” a copy of all shared state

2.thread reads, writes private working copy only

3.on join, “check-in” and merge changes

fork, copy shared stateparent
thread/

process

parent
thread/

process
child

thread/
process

parent's
working
state

child's
working
state

join, merge shared state

Seen This Before?

Precedents for “check-in/check-out” model:
● DOALL in early parallel Fortran computers

– Burroughs FMP 1980, Myrias 1988

– Language-specific, limited to DO loops

● Version control systems (cvs, svn, git, …)
– Manual check-in/check-out procedures

– For files only, not shared memory state

Determinator applies this model pervasively and
automatically to all shared state

t[0] t[1]

Example 1: Gaming/Simulation,
Conventional Threads

struct actorstate actor[NACTORS];

void update_actor(int i) {
...examine state of other actors...
...update state of actor[i] in-place...

}

int main() {
...initialize state of all actors...
for (int time = 0; ; time++) {

thread t[NACTORS];
for (i = 0; i < NACTORS; i++)

t[i] = thread_fork(update_actor, i);
for (i = 0; i < NACTORS; i++)

thread_join(t[i]);
}

}

actors
[0] [1]

main thread

read read

update update

synchronize,
next time step...

t[0] t[1]

actors
[0] [1]

main thread

Example 1: Gaming/Simulation,
Conventional Threads

struct actorstate actor[NACTORS];

void update_actor(int i) {
...examine state of other actors...
...update state of actor[i] in-place...

}

int main() {
...initialize state of all actors...
for (int time = 0; ; time++) {

thread t[NACTORS];
for (i = 0; i < NACTORS; i++)

t[i] = thread_fork(update_actor, i);
for (i = 0; i < NACTORS; i++)

thread_join(t[i]);
}

}

update

oops!
corruption/crash

due to race

read

(partial)
update

read

actors

[0] [1]

main thread

Example 1: Gaming/Simulation,
Determinator Threads

struct actorstate actor[NACTORS];

void update_actor(int i) {
...examine state of other actors...
...update state of actor[i] in-place...

}

int main() {
...initialize state of all actors...
for (int time = 0; ; time++) {

thread t[NACTORS];
for (i = 0; i < NACTORS; i++)

t[i] = thread_fork(update_actor, i);
for (i = 0; i < NACTORS; i++)

thread_join(t[i]);
}

}

t[0] t[1]fork fork

copy copy

update update

merge
diffs

merge
diffs

join join

Example 2: Parallel Make/Scripts,
Conventional Unix Processes

Makefile for file 'result'

result: foo.out bar.out
combine $^ >$@

%.out: %.in
stage1 <$^ >tmpfile
stage2 <tmpfile >$@
rm tmpfile

read Makefile, compute dependencies
fork worker shell

$ make

stage1 <foo.in >tmpfile
stage2 <tmpfile >foo.out
rm tmpfile

stage1 <bar.in >tmpfile
stage2 <tmpfile >bar.out
rm tmpfile

combine foo.out bar.out
>result

Example 2: Parallel Make/Scripts,
Conventional Unix Processes

Makefile for file 'result'

result: foo.out bar.out
combine $^ >$@

%.out: %.in
stage1 <$^ >tmpfile
stage2 <tmpfile >$@
rm tmpfile

read Makefile, compute dependencies
fork worker processes

$ make -j (parallel make)

stage1
<foo.in
>tmpfile

stage2
<tmpfile
>foo.out

rm tmpfile

stage1
<bar.in
>tmpfile

stage2
<tmpfile
>bar.out

rm tmpfile
tmpfile

corrupt!

read foo.out, bar.out
write result

Example 2: Parallel Make/Scripts,
Determinator Processes

Makefile for file 'result'

result: foo.out bar.out
combine $^ >$@

%.out: %.in
stage1 <$^ >tmpfile
stage2 <tmpfile >$@
rm tmpfile

$ make -j

read Makefile, compute dependencies
fork worker processes

copy file
system

copy file
system

stage1
<foo.in
>tmpfile

stage2
<tmpfile
>foo.out

rm tmpfile

stage1
<bar.in
>tmpfile

stage2
<tmpfile
>bar.out

rm tmpfile

read foo.out, bar.out
write result

merge file
systems

merge file
systems

What Happens to Data Races?

Read/Write races: go away entirely
● writes propagate only via synchronization
● reads always see last write by same thread,

else value at last synchronization point

w(x)

r(x)

w(x)

What Happens to Data Races?

Write/Write races:
● go away if threads “undo” their changes

– tmpfile in make -j example

● otherwise become deterministic conflicts
– always detected at join/merge point

– runtime exception, just like divide-by-zero

w(x) w(x)

trap!

Example 2: Parallel Make/Scripts,
Determinator Processes

Makefile for file 'result'

result: foo.out bar.out
combine $^ >$@

%.out: %.in
stage1 <$^ >tmpfile
stage2 <tmpfile >$@
rm tmpfile

$ make -j

read Makefile, compute dependencies
fork worker processes

copy file
system

copy file
system

stage1
<foo.in
>tmpfile

stage2
<tmpfile
>foo.out

stage1
<bar.in
>tmpfile

stage2
<tmpfile
>bar.out

merge file
systems

tmpfile: conflict detected!

Repeatability

Ability to replay past executions gives us:
● Bug reproducibility
● Time-travel debugging (reverse execution)
● [Byzantine] fault tolerance
● Computation accountability (PeerReview)
● Intrusion analysis/response (ReVirt, IntroVirt)

Sometimes need system-enforced determinism
– replay arbitrary malicious code exactly

Talk Outline

✔ Introduction: Parallelism and Data Races
✔ Determinator's Programming Model
● Prototype Kernel/Runtime Implementation
● Performance Evaluation

Determinator Microkernel

Determinator OS Architecture

Device I/O

Child Space Child Space

Grandchild Space Grandchild Space

Parent/Child
Interaction

Parent/Child
Interaction

Root SpaceRegisters
(1 thread)

Address Space

Snapshot

Hardware

Microkernel API

Three system calls:
● PUT: copy data into child, snapshot, start child
● GET: copy data or modifications out of child
● RET: return control to parent

(and a few options to each – see paper)

No kernel support for processes, threads, files,
pipes, sockets, messages, shared memory, ...

User-level Runtime

Emulates familiar programming abstractions
● C library
● Unix-style process management
● Unix-style file system API
● Shared memory multithreading
● Pthreads via deterministic scheduling

it's a library → all facilities are optional

Code Data
Code Data

Child2 Space

Code Data

Child1 Space

Code Data

2a. copy
into Child2

1a. copy
into Child1

2b. save
snapshot

1b. save
snapshot

Threads, Determinator Style

Parent Space
Multithreaded

Process

Code Data

Parent:
1. thread_fork(Child1): PUT
2. thread_fork(Child2): PUT
3. thread_join(Child1): GET
4. thread_join(Child2): GET

Child 1:
read/write memory
thread_exit(): RET

Child 2:
read/write memory
thread_exit(): RET

3. copy diffs
back into Parent

4. copy diffs
back into parent

writes writes

Virtual Memory Optimizations

Copy/snapshot quickly via copy-on-write (COW)
● Mark all pages read-only
● Duplicate mappings rather than pages
● Copy pages only on write attempt

Variable-granularity virtual diff & merge
● If only parent or child has modified a page,

reuse modified page: no byte-level work
● If both parent and child modified a page,

perform byte-granularity diff & merge

Threads, Classic Style

Optional deterministic scheduling
● Backward compatible with pthreads API
● Similar to DMP/CoreDet approach

– Quantize execution by counting instructions

Disadvantages:
● Same old parallel programming model

– Races, schedule-dependent bugs still possible

● Quantization incurs runtime overhead

Emulating a Shared File System

Each process has a complete file system replica
in its address space
● a “distributed FS”

w/ weak consistency
● fork() makes virtual copy
● wait() merges changes

made by child processes
● merges at file rather than byte granularity

No persistence yet; just for intermediate results

Determinator Kernel

File
System

Root
Process

File
System

Child
Process

File
System

Child
Process

File System
Synchronization

File System Conflicts

Hard conflicts:
● concurrent file creation, random writes, etc.
● mark conflicting file → accesses yield errors

Soft conflicts:
● concurrent appends to file or output device
● merge appends together in deterministic order

Distributed Computing

Determinator Kernel

Child (0,1)Child (0,0)

Determinator Kernel

Child (1,1)Child (1,0)

Cross-Node
Space Migration(home)

Cluster Node 0 Cluster Node 1

Other Features (See Paper)

● System enforcement of determinism
– important for malware/intrusion analysis

– might help with timing channels [CCSW 10]

● Distributed computing via process migration
– forms simple distributed FS, DSM system

● Deterministic scheduling (optional)
– backward compatibility with pthreads API

– races still exist but become reproducible

Talk Outline

✔ Introduction: Parallelism and Data Races
✔ Determinator's Programming Model
✔ Prototype Kernel/Runtime Implementation
● Performance Evaluation

Evaluation Goals

Question: Can such a programming model be:
● efficient
● scalable

...enough for everyday use in real apps?

Answer: it depends on the app (of course).

Single-Node Speedup over 1 CPU

Single-Node Performance:
Determinator versus Linux

Coarse-grained Fine-grained

Drilldown: Varying Granularity
(Parallel Matrix Multiply)

Drilldown: Varying Granularity
(Parallel Quicksort)

“break-even point”

Future Work

Current early prototype has many limitations
left to be addressed in future work:
● Generalize hierarchical fork/join model
● Persistent, deterministic file system
● Richer device I/O and networking (TCP/IP)
● Clocks/timers, interactive applications
● Backward-compatibility with existing OS
● …

Conclusion

● Determinator provides a race free,
deterministic parallel programming model

– Avoids races via “check-out, check-in” model

– Supports arbitrary, existing languages

– Supports thread- and process-level parallelism

● Efficiency through OS-level VM optimizations
– Minimal overhead for coarse-grained apps

Further information: http://dedis.cs.yale.edu

http://dedis.cs.yale.edu/

Acknowledgments

Thank you:
Zhong Shao, Rammakrishna Gummadi,
Frans Kaashoek, Nickolai Zeldovich, Sam King,
the OSDI reviewers

Funding:
ONR grant N00014-09-10757
NSF grant CNS-1017206

Further information: http://dedis.cs.yale.edu

http://dedis.cs.yale.edu/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40

