Deterministic Process Groups in oax

Tom Bergan
Nicholas Hunt, Luis Ceze, Steven D. Gribble

University of Washington

global x=0
Thread | Thread 2

Process O

4)

send (msg=A)
ksend(msg=B)

Process | l l Process 2

Who gets msg A?

shared-memory

why nondeterministic:
multiprocessor hardware is
unpredictable

IPC (e.g. pipes)
why nondeterministic:

multiprocessor hardware is
unpredictable

posix signals

why nondeterministic:
unpredictable scheduling, also
can be triggered by users

disks

why nondeterministic:
drive latency is
unpredictable

network

why nondeterministic:
packets arrive from
external sources

* Nondeterminism makes programs ...

= hard to test
» same input, different outputs

= hard to debug
» leads to heisenbugs

= hard to replicate for fault-tolerance
» replicas get out of sync

* Multiprocessors make this problem much worse!

® OS support for deterministic execution

= of arbitrary programs
= attack all sources of nondeterminism (not just shared-memory)
= even on multiprocessors

New OS abstraction:
Deterministic Process Group (DPG)

. I
E Thread, :

|
, Thread> Threads | .
| |
1 Process A Process B
| |

deterministic box

@ What can be made deterministic?

@ What can we do about the
remaining sources of hondeterminism?

@ What can be made deterministic?

- distinguish internal vs. external nondeterminism

@ What can we do about the
remaining sources of nhondeterminism?

e arises from scheduling * arises from interactions
artifacts (hw timing, etc) with the external world
(networks, users, etc)

NOT Fundamental Fundamental
can be eliminated! can not be eliminated

real time

users

deterministic box

|10

' shared l

. | memory

: Process |

: pipes

g (|) 58

' private

‘ files I Process 2

s 22
Process 3

deterministic box

S — o't

users real time

a programmer-defined
process group

users real time

--------------------------------------- .. LB m ¥
B e W , o
shared]

c

deterministic box 12

(memory] :

: Process |))(network)
2] |9

E private Q

E files Prcg)c?ses 2| < pipe)< --------------- :
i < ’(shared file "
Process 3 i E

8

‘ shared l

. | memory

: Process |
: pipes

g (|) 58

' private

files Process 2
g [200
Process 3

deterministic box

users real time

—
=
et
e
-)

~ %
-l

| Precisely controls
all external inputs

* value of input data
* time input data arrives |

13

users real time

— S -

user-space apps

\

\

An entire virtual machine could
go inside the deterministic box!

- too inflexible
- too costly

s (virtual macrﬁ))

deterministic box 14

operating syst

Thread,

—_] (

network)

Thread>

Process A Process B

:‘ Threads f

user |/O)

} weaSoud wiys |

deterministic

OS ensures:

box

e [internal] nondeterminism is eliminated

(for shared-memory, pipes, signals, local files, ...)

o [external] nondeterminism funneled through shim program

Shim Program:

* user-space program that precisely controls all [externall
nondeterministic inputs 5

Conceptual:
= identify internal vs. external nondeterminism
= key: internal nondeterminism can be eliminated!

Abstraction:
= Deterministic Process Groups (DPGs)
= control external nondeterminism via a shim program

Implementation:
= dOS, a modified version of Linux
= supports arbitrary, unmodified binaries

Applications:
= deterministic parallel execution
= record/replay

= replicated execution .

e Example Uses
= a parallel computation

= 3 webserver

* Deterministic Process Groups
= system interface

= conceptual model

e dOS: our Linux-Based Implementation

e Evaluation

|7

files

. parallel program <« local mputj

deterministic box

This program executes deterministically!

e even on a multiprocessor
o supports parallel programs written in any language

» no heisenbugs!
» test input files, not interleavings

|18

networlk, etc)
(many threads/processes)

: webserver

deterministic box

Deterministic Record/Replay

e implement in shim program
e requires no webserver modification

Advantages

» significantly less to log (internal nondeterminism is eliminated)
» log sizes 1,000x smaller!

19

network, etc)

webserver

deterministic box

Fault-tolerant Replication

e implement replication protocol in shim programs
(paxos, virtual synchrony, etc)

Advantage

» easy to replicate multithreaded servers
(internal nondeterminism is eliminated)

20

Using DPGs to construct appllcatlons

determlnlstlc part . | nondeterministic part
(|n a DPG) | (in a shim)
request |, IOW'IeIZf/IO
processing networ
(bundle into requests)
webserver

* behaves deterministically w.r.t. requests rather than packets

Shim program defines the nondeterministic interface

21

e Example Uses
= a parallel computation

= 3 webserver

* Deterministic Process Groups
= system interface

= conceptual model

e dOS: our Linux-Based Implementation

e Evaluation

22

. F v |

' i 2.3

. Thread, \ ~ai 3 (network)
:| w 19}

t - Thread Thread O |

: d = 3 -~ °§ -, user 1/O)
' Process A Process B =B
. -

deterministic box

System Interface

* New system call creates a new DPG: sys makedet ()
» DPG expands to include all child processes

® Just like ordinary linux processes
» same system calls, signals, and hw instruction set

» can be multithreaded

23

Thread, ﬁ
Thread; HThread3 H

Process A Process B

(network)

user I/O)

i weaSoud wiys |

deterministic box

Two questions:
* What are the semantics of |internal| determinism?

* How do shim programs work!?

24

deterministic box

Internal Determinism

. P 5
A Threadi | | 5 j¢—>(network)
:[: » B2
I ¢ O 3§
L Threada) | Threads |, 1 | user 1/0)
' Process A Process B =8

e OS guarantees[internall communication is scheduled

deterministically

* Conceptually: executes as if serialized onto a logical timeline
» implementation is parallel

25

Logical

Thread, W™ Thread;
Timeline

wWr X t%l
tTZ rd x -« always reads same value of x
tT3 read (pipe)

rd y tT4 | | always blocks for 3 time steps

| blocking call <«——

rd z tT 5 | always returns same data

tT6 read (pipe)

t=7 Wr Y

Each DPG has a logical timeline
» instructions execute as if serialized onto the logical timeline

» [internallevents are deterministic

26

Logical

Thread, W™ Thread;
Timeline

wWr X t%l

t=2 rd x

p arbitrary delays in physical time
are possible

t=3 read (pipe)
rd y tT4 | blocking call
rd z tT5

tT6 read(pipe)

=7 WX y

(_I.

Physical time is not deterministic
» deterministic results, but not deterministic performance

27

Logical Physical
Thread, -O8!™ Thread; 4
Timeline Time
Wr X t%l external channel
tTZ rd x l
tT3 read (socket)
t=4 |
rd y | { blocking call packet
rd z tTS v PUUPUSPEEELLL arrival
tT6 read (socket)

t=7 wWr y

Two sources of nondeterminism:

® data returned by read()
® blocking time of read ()

28

Logical Physical
Thread, . & . Thread> y
Timeline Time
WY X t%l external channel
tTZ rd x l
t=3 read (socket)
rd y tL4 iblocking call B packet
| ---------- arrival
tTS read (socket) <"
tT6 Wr Vv

rd z t=7

Two sources of nondeterminism:

® data returned by read()
® blocking time of read ()

29

Logical Physical
Thread, . & . Thread> y
Timeline Time
WY X t%l external channel
tTZ rd x l
t=3 read (socket) __packet
| ¥ blocking call ~ ___.----=""" arrival
tT4 read (socket) <~
tTS Wr y
rd y tT6

rd z t=7

Two sources of nondeterminism:

® data returned by read()
® blocking time of read ()

30

Logical Physical
Thread, -O8!c Thread; 4
Timeline Time
WX X t%l
tTZ rd x
tT3 read (socket)
rd y tT4 | o ” packet
OCKINg Ca i
rd z L | 8 arrival
| v «
tT6 read (socket)

t=7 wWr y

Two sources of nondeterminism:

® data returned by read() » the what
® blocking time of read () » the when

31

Logical
Timeline

t=2

DPG
Thread

Shim
Program OS

return(“hello”) | .

Shim can either...

@ Monitor call (e.g., for record)

@ Control call (e.g., for replay)
AN

32

Logical DPG
Timeline Thread

t=2

Shim
Program OS

i return(“hello”) i

Shim can either...
@ Monitor call (e.g., for record)

@ Control call (e.g., for replay)
AN

J

33

Key idea: We have implemented

this idea (see paper)

® protocol delivers (time,msg) licati
pairs to replicas eplication

® ensure replicas see same PrOtOCOI

input at same |ogical time

dgm . ﬂgm - N d?n
multithreaded multithreaded multithreaded

server | ! . server |i | server

DPG Replica | DPG Replica 2 DPG Replica 3

34

e Example Uses
= a parallel computation

= 3 webserver

* Deterministic Process Groups
= system interface

= conceptual model

e dOS: our Linux-Based Implementation

e Evaluation

35

Modified version of Linux 2.6.24/x86 64

= ~8,000 lines of code added or modified
= ~50 files changed or modified

= transparently supports unmodified binaries

Support for DPGs:

= implement a|deterministic scheduler

= implement an API for writing shim programs

= subsystems modified:
- thread scheduling
- virtual memory

Paper describes challenges in depth

36

Which deterministic execution algorithm?
e DMP-O, from prior work [Asplos0,Asplos|0]

- other algorithms have better scalability, but
- ... Dmp-0O is easiest to implement

How does DMP-O work?
How does dOS implement DMP-0?

37

Thread, Thread> Threads

Key idea:

® serialize all communication

deterministically

38

Thread, Thread> Threads

parallelize
until there is >
communication

39

Logical

Thread, Thread; Threads Timeline
parallelize
until there is > £=1
communication
serialize N D= R
communication Ix= £=2

(_|-
Il
w

Ownership table

® assigns ownership of data to threads

® communication: thread wants data it doesn’t own

40

Thread| Thread; Threads

Ownership Table

must instrument the system interface

® Joads/stores
- for shared-memory T

® system calls T
- for in-kernel channels
- explicit: pipes, files, signals, ...
- implicit: address space, file descriptor
table, ...

Thread| Thread; Threads

Ownership Table

for shared-memory

® must instrument loads/stores
- use page-protection hw T

® each thread has a shadow page table T
- permission bits denote ownership
- page faults denote communication
- page granularity ownership

Ownership Table Thread, Thread; Threads

for in-kernel channels (pipes, etc.) Many challenges
and complexities

® must instrument system calls

o , (see paper)
on syscall entry:

- decide what channels are used

read(): pipe or file being read
mmap (): the thread’s address space

"
-
-
-

- acquire ownership
ownership table is just a hash-table

- any external channels?
if yes: forward to shim program I

P
$ 44

e Example Uses
= a parallel computation

= 3 webserver

* Deterministic Process Groups
= system interface

= conceptual model

e dOS: our Linux-Based Implementation

e Evaluation

45

Setup

= 8-core 2.8GHz Intel Xeon, I0GB RAM
= Each application ran in its own DPG

Verifying determinism
= used the racey deterministic stress test [SCA02 MarkHill

Key questions

= How much internal nondeterminism is eliminated!?
(log sizes for record/replay)

= How much overhead does dOS impose!

= How much does dOS affect parallel scalability?

46

dOS

= implemented an “execution recorder” shim

SMP-ReVirt (a hypervisor) [VEE 08]

= also uses page-level ownership-tracking
= _..but has to record internal nondeterminism

Log size comparison

dOS SMP-ReVirt
fmm | MB 83 GB (log size per day)
lu || MB || GB
ocean L AMB 28 GB
radix ~ImMB 88 GB : 8,800x bigger!
water 5 MB 58 GB

47

Possible sources of overhead
» deterministic scheduling
» shim program interposition

Ran each benchmark in three ways:
» without a DPG (ordinary, nondeterministic)

I scheduling overheads
» with a DPG only

I shim overheads

» with a DPG and an “execution recorder” shim program

48

Apache
» |6 worker threads
» serving |00KB static pages

DPGs saturate | gigabit network

» serving 10 KB static pages

Nondet (no DPG) saturates | gigabit network
DPG (no shim): 26% throughput drop

DPG (with record shim): 78% throughput drop (over Nondet)

Chromium
» process per tab
» scripted user session (5 tabs, 12 urls)

DPG (no shim): |.7x slowdown

DPG (with record shim): |.8x slowdown (over Nondet)
49

Parallel application slowdowns
» DPG only
» relative to nondeterministic execution

| 0x fine-grain - = 2 thread
loses scalability f - 4Eh:::d:
NG x:’ -
: " ‘ : 8 threads
'8 Loy
3 5x 5x = 5 times slower with DPGs |
7 om o - W‘J V7
preserves scalability| =
- X
| x ._.cwj
Ox

blackscholes lu pbzip dedup fmm make

50

Deterministic Process Groups
= new OS abstraction
= ecliminate or control sources of nondeterminism

dOS

= | inux-Based implementation of DPGs
= use cases demonstrated: deterministic execution, record/
replay, and replicated execution

Also in the paper...

= many more implementation details
= a more thorough evaluation
= thoughts on a “from scratch” implementation

51

Questions!?

http://sampa.cs.washington.edu

C:\DOS
C: \DOS\RUN
C:\DOS\RUN\DETERM~1 .EXE

52

http://sampa.cs.washington.edu
http://sampa.cs.washington.edu

(backup slides)

53

Already good enough for some workloads!

® infrequent system calls
® infrequent fine-grained sharing
- examples: Apache |00KB static pages, blackscholes, pbzip, etc.

Improvements possible:

® better scheduling algorithm (DMP-TM, DMP-B) [Asplos0%,AsplosiO]
® binary instrumentation (to support arbitrary data granularity)
® implement shims as kernel modules (lower context switch overhead)

Research question:

® how much does determinism fundamentally impact performance!?

54

Deterministic scheduler
7% serialization % single-stepping

Apache 100KB 26% 0%
Apache |0KB 60% 0%
Chromium 25% | 3%
blackscholes 3% 27%
fmm 54% | 8%
dedup 90% 12%

Shim context-switching

microbenchmark: 5x overhead on system call traps

55

DPGs give you determinism, which helps:
® testing
® debugging
¢ fault-tolerant replication

® security
- can eliminate internal timing channels [Aviram etal CCSWIO]

DPGs give you determinism flexibly:

® user-defined process group
- keeps separate apps isolated in their own determinism domain

® shim programs can customize:
- the interface to the nondeterministic external world
- the set of deterministic services
(more details in paper)

56

Internal Determinism
Design Choices

PTTTTTTTIIITITTIIInTTY) N
' A single thread
= current systems
- massively nondeterministic on multiprocessors
J
: | : A
<CA single multithreaded process ,
| ™

:> <[A group of multithreaded processes
- our choice
- most flexible

A virtual machine
- too costly, too inflexible

<CA local area network cluster?

deterministic box 57

DPGS

A AN

Language?
v/ more robust determinism, enables static analysis (lower cost)
= must rewrite program with specialized constructs

Operating System?
v support arbitrary, unmodified binaries
= high overheads for some workloads

Compiler?
v lower overheads than OS for some workloads (finer-grained tracking)
= can’t resolve communication via the kernel

Hardware?

v low-overhead shared-memory determinism

= must build custom hardware
58

Advantages of SMP-ReVirt

V full-system record/replay
- includes OS code
- via a hypervisor implementation

Advantages of dOS

v process level
- cheaper than full-system!?
- don’t need to resolve kernel-level shared-memory
(up to 50% of sharing for some benchmarks [VEE 08])

v no internal nondeterminism
- smaller logs (by |,000x)

59

Record internal nondeterminism
= in software [SMP-ReVirt, Scribe, DejaVy, ...]

= in hardware [FDR, Delorean,...]
» big logs, high runtime overheads for software

Search execution space during replay

= record a few bits of internal nondeterminism [PRES, ODR]

= record nothing [FP]
» cannot guarantee replay (might fail to find an execution)

Advantages of dOS

v small logs (no internal nondeterminism)
V replay is guaranteed

60

References

= DMP ASPLOS09] custom hardware

= Kendo ASPLOS 091 custom runtime (race-free programs only)
= CoreDet [ASPLOSI0] custom compiler/runtime

= Grace [OOPSLA 10] custom runtime (fork-join programs only)

Advantages of dOS

Vv supports:
- multiple processes

- communication other than shared-memory (pipes, etc.)
- arbitrary binaries

v does not require:
- custom hardware
- recompilation

V' shims for external nondeterminism
61

