Intrusion Recovery
using Selective Re-execution

Taesoo Kim, Xi Wang,
Nickolai Zeldovich, M. Frans Kaashoek

MIT CSAIL

Attackers routinely
compromise system 1integrity

[M] ‘Google’ Hackers Had... Gy
< € | © www.wired.com/threatlevel/2010/03/source-code-hacks 0% A

F

‘Google’ Hackers Had Ability to Alter Source Code

By Kim Zetter B March 3, 2010 | 11:05 pm | Categories: Cybersecurity, Hacks and Cracks

Step 6 Step 1

Hackers who breached Google and other companies in January targeted source-code management
systems, security firm McAfee asserted Wednesday. They manipulated a little-known trove of security

. ArooposEte | SRR SRS RO LR RS | DA R TG ER T ey | fOoeey B DOl e SR NSRS T ¢ DR SOOI LR FNEC OO o I

Attackers routinely
compromise system integrity

[M] ‘Google’ Hackers Had... Gy
< € | © www.wired.com/threatlevel/2010/03/source-code-hacks O A

‘Gnngle’ Hackers Hac = - ~ The Harvard Crimson | Faculty Council Votes To Dismiss Student - Mozilla Firefox

By Kim Zetter & March 3, 2010 | 11:05pm | | File Edit View History Bookmarks Tools Help

<ﬁ1—] M 'ic,j @ |@|http:;’fwww.thecrim5Dn.cDmfarticlefzﬂlﬂﬁflﬂr!faculi v| |..‘]T| @,
Step 6 -
gyt [@) The Harvard Crimson | Faculty ... e .
s
& m -

"I'he Harvard Crimson

May 14, 2010

Faculty Council Votes To Dismiss Student

By Eric P. Newcomer and Naveen N. Srivatsa, CRIMSON STAFF WRITERS

An undergraduate has been dismissed from Harvard College after allegedly hacking into
online accounts of the teaching staff in his courses.

The Faculty Council decided on May 5 to dismiss the student, who, according to Secretary of
the Administrative Board John “Jay” L. Ellison, collected confidential information and used it
to gain unauthorized access to the Registrar’s Office’s grading portal.

The student, whose name has not been released by administrators, designed a website to
obtain the Harvard University IDs and the personal identification numbers (PIN) of his
instructors.

e e “Their privacy was violated, and I think that violates a community standard that’s
systems, security firm McAfee asserl

Jom o e o e =R sacrosanct here,” Ellison said. In addition to obtaining improper access to teaching staff

Attackers routinely
compromise system integrity

[M] ‘Google’ Hackers Had...

\

< € | © www.wired.com/threz

tlevel/2010/03/source-code-hacks (<] 'ﬁ| A

‘Google’ Hackers Hac

By Kim Zetter B March 3, 2010 | 11:05 pm |

Step 6

Wi Mame! Eiogdhouni Evplok &
Agkon Taken: Lnabls bo sepadr this flg.

systems, security firm McAfee asser

e s R - s T o e S e o s S

ﬁ Blarton Arib'sngs hars Grbeibed 2 vings on your ooimgeor,

Ot Prame; o Document s aned Setbngs Sy Wil Locsl Settng.- a1].em

=) ~ ~ The Harvard Crimson | Faculty Council Votes To Dismiss 5

File Edit View History Bookmarks Tools Help

Resident Shield: New virus detected

3 -
@ Warning! New virus detecte

Threat detected: Backdoor.POISON.BOA

Securiky risk: | e——— |

<"‘:| v & @ | [@] | http://www.thecrimson.com/article/2010/5/

Infected file: CHA\WINDOWSisystem32\compack.e

[@) The Harvard Crimson | Faculty ... | 57

Description: This backdoor arrives as atkachmen
another malware or a malicious user
the Darkmoon RAT (Remote Adminis

"I'he Harvard Crimson

hackers attempt bo control wour PC.

& s Recommended: Please click "Remove all' butka
«ej infected Files and protect your PC

May 14, 2010

FaClllt'y Counci &

has been disn
the teaching g

privacy or damage your complker,

Marne
'@' Backdoor:Win3Z/NTRo

decided on
Board John “
d access to t -
@' Trojan.Caiijing
b name has no
University IL

x|

—— == violated, and
sacrosanct here,”

Cnline Scanner detected programs that may compraomise wour

'@' Backdoor:Win3Z fSivuxa. High

Ellison said. In addition to obtaining improper access to teaching staff

Quick System Scan Results b_<|

Harmful and malicious software detected
mner and Naved

Understanding alert levels,

Alert lewvel of
ot High 1 it

[

High

||

[Remove Al l [Ignore]

Compromises inevitable

 Difficult to write bug-free software
 Administrators mis-configure policies
» Users choose weak, guessable passwords

Compromises inevitable

Difficult to write bug-free software
Administrators mis-configure policies
Users choose weak, guessable passwords

Need both “proactive” security,
and “reactive” recovery mechanisms

Limited existing recovery tools

e Anti-virus tools

* Only repair for predictable attacks

 Backup tools

* Restoring from backup discards all changes

Limited existing recovery tools

e Anti-virus tools

* Only repair for predictable attacks

 Backup tools

* Restoring from backup discards all changes

 Administrators spend days or weeks manually
tracking down all effects of the attack

 No guarantee if they found everything

Challenge: disentangle changes
by attacker and legitimate user

* Adversary could have modified many files directly

* |egitimate processes may have been affected
 Users ran trojaned pdflatexor ls
« SSH server read a modified /etc/passwd

 Those processes are now suspect as well

Our approach: help users
disentangle on one machine

Record history of all computations on machine
After intrusion found, roll back affected objects
Re-execute actions that were indirectly affected

Minimize user input required to disentangle
o User edited attacker's file with emacs
 External effects outside of our control

Contributions

 New approach to system-wide intrusion recovery

* Action history graph tracks computations and repairs
e Techniques: re-execution, predicates, and refinement

* Retro: prototype recovery system for Linux

* Recovers from 10 real-world and synthetic attacks
 No user input required in most cases

Contributions

 New approach to system-wide intrusion recovery
* Action history graph tracks computations and repairs
e Techniques: re-execution, predicates, and refinement
* Retro: prototype recovery system for Linux

* Recovers from 10 real-world and synthetic attacks
 No user input required in most cases

* |Instead of spending days on manual recovery,
admin can use Retro to automatically recover,
and ensure that all effects of attack are caught

Example attack scenario

» Attacker modifies /etc/passwd to add new account
e Installs trojan pdflatex, 1s to restart, hide botnet

“@(e Admin modifies /etc/passwd
to add account for Alice
e Alice logs in via SSH
e SSH server reads /etc/passwd
e Alice runs trojaned pdflatex, 1s

» Attacker not targeting Alice, wants to run botnet

Strawman 1: Taint tracking

Strawman 1: Taint tracking

* Log all OS-level dependencies in system

oy

Strawman 1: Taint tracking

* Given attack, track down all affected files, and
restore just those files from backup

Attac

Strawman 1: Taint tracking

* Given attack, track down all affected files, and
restore just those files from backup

pdflatex
Attack
(iiiiii’
shell
Attacker passwd login Alice's
Drocess file
Alice's

PDF file
paper
adduser Alice's
alice files

Problem with taint tracking:
false positives

 Taint tracking conservatively propagates
everywhere through shared files

pdflate LaTeX
Attack
Alice's
Alice's shell
Attacker d login Alice's
Drocess PDF file
Alice's
paper
adduser Alice's
alice files

Problem with taint tra
false positives

 Taint tracking conservatively propagates
everywhere through shared files

pdflate

Attack
Attacker
Drocess

Alice's account
and files are lost!

LaTeX
Drocess

Strawman 2: VM

Time

Virtual machine

Strawman 2: VM

Inputs Time

Outputs

Virtual machine

Periodic VM checkpoints

Inputs Time

Outputs

Virtual machine

Step 1: identify attack input

Inputs Time

Outputs
Attack input

Virtual machine

Step 2: roll back to checkpoint

Inputs Time

Outputs
Attack input

Virtual machine

Step 3: replay non-attack inputs

Inputs Time

Outputs

Attack input \Q(

Virtual machine

Problem with VM strawman:
re-execution is expensive, diverges

Inputs Time

Outputs

Attack input \g(

/

* May take one week to re-execute for a week-old attack

* Original VM inputs may be meaningless for new system

* Non-determinism: new SSH crypto keys, inode #s, app state, ...

K e Can't do deterministic re-execution, since some inputs changed/

Retro's approach:
selective re-execution

* Record fine-grained action history graph

* |ncludes system call arguments, function calls, ...
 Assume tamper-proof kernel, storage

* Roll back objects directly affected by attack

» Avoid the false positives of taint tracking

* Re-execute actions indirectly affected by attack

* Avoid expense, non-determinism of whole-VM re-exec.

Action history graph:
Objects represent files, processes

attacker's password adduser admin's
process file alice shell Time

Action history graph:
Actions represent execution

attacker's password adduser admin's
process file alice shell Time

Action history graph:
Actions have dependencies

attacker's password adduser admin's
process file alice shell Time

» Ug a

Action history graph:
Actions have dependencies

attacker's password adduser admin's
process file alice shell

» Ug a

Time

Action history graph:
Actions have dependencies

attacker's password adduser admin's
process file alice shell

Time

Action history graph:
Actions have dependencies

attacker's password adduser admin's
process file alice shell

Time

Action history graph:
Objects have checkpoints

attacker's password adduser admin's
process file alice shell

Time

Step 1: find attack action

attacker's password adduser admin's _
process file alice shell [Ime

Step 2: roll back affected objects

attacker's password adduser admin's _
process file alice shell [Ime

Step 3: redo non-attack actions

attacker's password adduser admin's _
process file alice shell [Ime

Oltset, at

Repeat step 2: roll back objects

attacker's password adduser admin's _
process file alice shell [Ime

Oltset, at

Repeat step 3: redo actions

attacker's password adduser admin's _
process file alice shell [Ime

Oltset, at

~ -
»

' Prog args: -

Key advantage over
VM strawman:

Re-run only adduser,

not entire VM.

Repeat step 3: redo actions

attacker's password adduser admin's _
process file alice shell [Ime

Repeat step 3: redo actions

attacker's password adduser admin's
process file alice shell

e, O

) at

Better than either VM
or taint tracking:

Alice account preserved,
no re-run of entire VM

Challenge: how to avoid
re-executing everything?

attacker's
process

) at

password

file

adduser admin's
alice shell

/ Exit status affects shell, .
which affects sshd, and so on... atus

Nailve process-level re-execution
\still re-executes entire system!

Observation: many suspect
computations are not affected

» Attacker adds 1 account to password file

e Alice's sshd reads password file,
but looks up Alice's account instead of attacker's

o Attacker adds 1 line to pdflatex to restart botnet

« Alice's pdflatex process may restart botnet,
but otherwise does legitimate work

» Significant changes — can detect attack earlier

Approach: minimize re-execution

* Predicates: Retro skips equivalent computations

* Predicate checks whether inputs are the same
* |f so, assume original result OK, avoid re-execution

 Refinement: Retro re-executes fine-grained actions

e Avoid re-executing entire process or login session,
when only a small part of it was affected

Example 1:
exit status to shell unchanged

attacker's password adduser admin's
process file alice shell

—iie O

) at

Predicates:
avoid equivalent re-execution

attacker's password adduser admin's
process file alice shell
o O
S€L, daf
Same input N
(exit status)
as before?

No need to re-run
shell action./

Example 2:
user's password unchanged

attacker's password alice's
process file sshd lime

Refinement:
re-execute individual functions

attacker's password getpwnam alice's _
process file function sshd lIme

Oltset, at

Refinement:
re-execute individual functions

attacker's password getpwnam alice's _
process file function sshd lIme

OSe .

] at

return value
as before?

Remaining challenge:
external dependencies

 What if the attack was externally-visible?

« Attacker sent spam, or user saw wrong output from 1s

» Cannot solve general case (spam already sent)

 Will need to pause repair and ask for user input

 Can do compensating actions in some cases

Compensating action for
terminals: email diff to user

nickolai@karakum:~$ cd undosys/libundo
nickolai@karakum:~/undosys/libundo$

-rw-r--r-- 1
-rw-r--r—- 1
drwxr-xr-x 2
—-rwXr-xr-x 1
drwxr-xr-x 2
-rw-r—--r—- 1
-rw-r—--r—-- 1
-rw-r--r—-

nickolai
nickolai
nickolai
nickolai
nickolai
nickolai
nickolai

nickolai
nickolai
nickolai
nickolai
nickolai
nickolai
nickolai

493
2124
4096

973
4096
5221
1424

1 nickolai nickolai 6603

nickolai@karakum:~/undosys/libundo$

84 .

nickolai@karakum:~/undosys/libundo$
nickolai@karakum:~/undosyss$

1s -1

2010-05-13
2010-05-13
2010-05-13
2010-05-13
2010-05-13
2010-05-13
2010-05-13

2010-05-13
du -ks

cd

09:
10:
09:
09:
09:
09:
09:

09:

46
22
46
46
46
46
46

46

Makefile
attack.c

bdb
mailserver.py
php

pwd.c

undo.py

undowrap.c

Retro implementation

(

A

Repair
controller

-
|

/———‘

OS mgr

Terminal

Network

File system

N

Repair
managers

\
I
I

s\

Processes
———— =~ libc wrappers
Log
S e | Linux kernel
Retro module
Ac Cti?)n_higtOFy :
graph File system

Retro implementation

4,800 Iinesl _
700 lines
of Python —_—_——— -
y { . \ of C
'l OS mgr |
| I
\ _ Processesv
\ Terminal _
| ~— — — — ~ |4 libc wrappers
Network Log
Repair :
> Linux kernel
controller | |File system Snapshots
< ., \ Retro module
Repair Action history < File svetern
e e
200 lines ~ Managers :
of Python 3,300 lines

of C

Retro implementation

(

A

Repair
controller

-
|

/

Preserve inode numbers
by only reusing inodes
that are free in every snapshot

N

| Linux kernel
Snapshots
Y2 Retro module
Repair Action history _
managers graph File system

Terminal
Network Log
File system
o\

W

N

Processes

libc wrappers

Ing checkpointing

file system (e.g., btrfs)

Retro implementation

. . \
Shepherd re-execution using ptrace

to detect and skip equivalent
system calls (e.g., exec)

/———‘

(

'l OS mgr :
\L el Processes
\ ~— — — — ~ |4 libc wrappers
Network Log
Repair | _
controller . [File system Snapshots i | Linux kernel
«<_ _ __/s ____—_ Retro module
Repair Action history :
managers graph File system

Retro implementation

/———‘

'l OS mgr

I
i Terminal

I
Network

Repair
controller

File system

N

Repair
managers

Well-defined API:;

\
I
I

s\

rollback, redo, equiv, connect

Processes
———— =~ libc wrappers
Log
Linux kernel
Snapshots !
Retro module

Action history
graph

File system

Evaluation questions

 How much better is Retro than manual repair?

* What is Retro's cost during normal execution?

Evaluation setup

» 2 real-world attacks from honeypot

« Remove log entries, add accounts, run botnet

» 2 synthetic challenge attacks

 Running example (LaTeX trojan) and sshd trojan

* 06 attacks from Taser recovery system [Goel'09]

* File sharing, web servers, databases, desktop apps
« Website backdoors, trojans in 1s, new accounts

Retro repairs from all attacks

Attack Retro User input required

Log cleaning

—
\
_ \\ 7 _

sshd trojan Packet replay reqg'd — conflict!

N
_ . \\ // _

Content destruct. — (generates terminal diff)

Compromised DB

Weak password Skip attacker's login attempt

Retro repairs from all attacks

Petm User input required
Root pw change [\ Skip attacker's login attempt -

Log cleaning

sshd trojan Packet replay req'd — conflict!

Content destruct. (generates terminal diff)

Weak password Skip attacker's login attempt

6/10 cases: no user input needed,
automatic re-execution suffices

Attack Retro User input required
Root pw change (4

Log cleaning

/ D
\ /

sshd trojan

N
A\ /

Content destruct.

_ \.
"

Compromised DB

; A\
N 7

Weak password Skip attacker's login attempt

2/10 cases: user input needed
to skip attacker's SSH logins

Log cleaning

N\
_ i Z

sshd trojan Packet replay reqg'd — conflict!

Content destruct. — (generates terminal diff)

_ \ _
" /4

Compromised DB @

_ \
7

Weak password

Skip attacker's login attempt

2/10 cases: user input needed
to handle legitimate network I/O

Attack Retro User input required

Log cleaning

sshd trojan Packet replay reqg'd — conflict!

Content destruct. 2 - (generates terminal diff)

_ \. _
" /4
—

Compromised DB

; A\
N 7

Weak password Skip attacker's login attempt

Repair cost:
Retro repairs few objects

Objects repaired
by Retro

Log cleaning 99 (8%)

sshd trojan 880 (70%)

Repair cost:
Retro repairs few objects

Objects repaired
by Retro

Log cleaning 99 (8%)

sshd trojan 880 (70%)

* Repair cost proportional to extent of attack

Repair time depends
largely on # objects, not log size

Total size of Retro log Repair time for
(action history graph) 136 objects / 399 syscalls

5,699,149 system calls 4.7 seconds

Repair time depends
largely on # objects, not log size

Total size of Retro log Repair time for
(action history graph) 136 objects / 399 syscalls

5,699,149 system calls 4.7 seconds

« 10,000X increase in workload leads to
10X increase In repair time

« Much more efficient than whole-VM re-execution

Runtime overheads

Workload CPU cost Storage overhead

Runtime overheads

Workload CPU cost Storage overhead

Apache, small static files 127% 100GB / day

e Can store 2 weeks of logs on 2TB disk ($100)
even for worst-case extreme workloads

Runtime overheads

Workload CPU w/ 2" Storage overhead

Apache, small static files 127% 100GB / day

e Can store 2 weeks of logs on 2TB disk ($100)
even for worst-case extreme workloads

 Can off-load CPU overhead to extra core

Related work

e Tracking down intrusions
 BackTracker [King'03], IntroVirt [Joshi'05]

* Taint tracking to find, revert affected files
 Taser [Goel'05], Polygraph [Mahajan'09]

e Selective undo and re-execution

 Undoable mail store [Brown'03]
(fixing configuration errors in a single app)

Conclusion

* Hard to recover from attacks and preserve
legitimate user changes

* Retro repairs attacks, keeps legitimate changes

» Key idea: re-execution of legitimate actions
 Predicates and refinement minimize re-execution

Additional slides follow

Non-deterministic re-execution

e Goal: an acceptable execution

* An execution that could have happened in the
absence of the attack

 What if program is non-deterministic?

 Re-run may lead to another acceptable execution
* Result will not be influenced by attack

* |f significant differences arise (e.g., new crypto keys),
might need user input to re-execute

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74

