
SIGOPS to SIGARCH: “Now it’sour turn to pushyou around”

Jeffrey C. Mogul
HP Labs, Palo Alto, CA, 94304
Jeff.Mogul@hp.com

1 Introduction
For too many years, operating systems researchers and

developers have pretty much taken whatever the com-
puter architects have dished out. With the exception of
virtualization support, and maybe transactional memory,
architects and their cronies in the CPU industry have
not sought or encouraged innovations that would im-
prove the execution environment for operating systems.
Even worse, many architecture researchers do not even
bother to simulate and report on operating system behav-
ior when evaluating their novel proposals.

Times have changed: architects are running out of
new ideas that lead to significant application-level per-
formance improvements; we must now rely on improved
parallelism. But parallelism stresses the very issues that
operating systems research has focussed on: distribution,
resource management, I/O, etc. Also, many modern ap-
plications spend significant execution time in OS func-
tions; it really does matter whether a CPU works well on
OS code. So it is time for us to stop accepting what ar-
chitects throw at us, and time to start telling them how to
design our computers.

2 What has gone wrong
I have always been amused that scientific computing

papers often refer to CPU time spent in the operating
system as “noise.” (e.g., [7]). This implies a rather neg-
ative view of the value that an OS provides. Perhaps
for HPC users, the operating system really is just an an-
noyance, but for most computers, from sensor-net nodes
through handhelds and laptops to servers, the OS does
useful work, and often a lot of it.

There is some evidence to show that, for many real-
world applications, plenty of execution time is spent in
the OS [4]. (I will assume a loose definition of “the oper-
ating system” – it’s more than just kernel code, since in
many cases people have simply moved OS functionality
into user-mode libraries.) Perhaps this is not yet “ample”
evidence, although I suspect that this is mostly for lack
of a systematic study.

But computer architects, at least from the evidence
available in the scientific literature, seem to assume that
the operating system does not exist — except perhaps
when they assume it will magically manage application-

thread resources that the hardware cannot manage itself.
Architecture papers tend to use application-only bench-
marks, and seldom account even for the interference be-
tween application and OS execution (there are, of course,
counter-examples; e.g., Nellanset al. [4]). In short, while
architecture researchers sometimes pay lip service to the
OS, they almost never discuss the impact of architecture
on OS behavior.

Meanwhile, the typical operating systems paper al-
most always uses the phrase “on commodity hardware”.
We assume that we are stuck with whatever flaws this
hardware has.

3 Pushing back, constructively
Here are a few suggestions for constructive steps that

operating systems researchers could take to help archi-
tecture researchers see the error of their ways.

3.1 Put the OS back in ASPLOS
SIGOPS co-sponsors a conference called ASPLOS.

ASPLOS ostensibly stands for “Architectural Support for
Programming Languages and Operating Systems.” How-
ever, based on my somewhat rushed examination of the
ASPLOS 2010 proceedings, it would be more accurately
called “Architectural Support and OS Support for Mak-
ing Computer-Intensive Benchmarks Run Faster.” Only
one or two papers appear to describe new or improved ar-
chitectural support for an OS function (Sanchezet al. [5]
describe hardware support for fine-grained scheduling on
multicores; Johnsonet al. [3] describe how to remove
responsibility for contention management from the OS
scheduler).

Perhaps there really are no further hardware innova-
tions that would improve support for operating systems,
but this seems unlikely. SIGOPS should encourage the
ASPLOS leadership to actively solicit some good papers
of this sort.

3.2 Fund a decent simulator
Given the complexity of modern silicon, it is almost

impossible to do architectural research without simula-
tion. (Emulation via FPGAs is only practical for very
simple processors – for example, Chuck Thacker’s Bee-
hive system.) However, most widely-available, well-
supported simulators do not do “full system” simulation

1



of low-level architectural behavior – that is, you can’t run
a real operating system on them. There are a few excep-
tions, such as M5 [2], but M5 does not currently sup-
port the x86 ISA – therefore, it is hard to validate against
modern hardware or to make a truly convincing case.

Our community (both SIGOPS and SIGARCH) would
be a lot better off if we had a well-supported, Open
Source, cycle-level, x86 simulator. Getting this to hap-
pen appears to require at least a modest amount of fund-
ing. This money will probably have to come from a gov-
ernment agency, and the community needs to articulate
why this is worth doing.

3.3 Create an OS-relevant benchmark suite
Architecture researchers believe in quantitative mea-

surements, which is good; they believe in shared bench-
marks, which is good; but the benchmarks they use
(SpecCPU, SPLASH, PARSEC) almost never involve
the operating system. This is bad.

There are some benchmarks that stress operating sys-
tem functions (e.g., SPECWeb, Rubis, TPC-W). Archi-
tecture researchers almost never use these, for a few rea-
sons. First, they are hard to get running, and often have
complex parameter settings. Second, the systems we
want to simulate often involve networks of computers,
and this greatly complicates the problem of getting some-
thing running. Third, even if one has a full-system sim-
ulator, getting results in any reasonable amount of wall-
clock time requires running the benchmark for just a few
seconds (or less) of simulated time, which means that
the benchmark has to be seriously perverted – most of
these benchmarks are not designed to give useful results
so quickly.

If we want architecture researchers to think about sup-
port for operating systems, we will probably need to help
them with a suite of benchmarks that stress the things that
we care about, and are pre-packaged to run easily (with-
out a lot of thought about parameters) on cycle-level sim-
ulators.

There are a lot of possibilities for OS-relevant bench-
marks; in addition to those listed above, one might in-
clude Hadoop, or a virtualization management workload
[6]. (Micro-benchmarks, such as LMbench, also have
their uses, but can also be quite misleading.) The trick
will be getting them to run, with useful results, on a sim-
ulator: e.g., a benchmark that expresses the “essence of
Hadoop” in just 1 second.

4 A few examples
Here are a few last-minute examples of the kind of

architectural explorations OS people could provoke:

• As Baumannet al. have pointed out, your computer
is a distributed system [1]. They argue that there-
fore the operating system should be structured as

a distributed system, communicating internally by
messages rather than shared memory. But, as they
write, “On current commodity hardware” (there’s
that phrase again!) “the cache coherence protocol is
ultimately our message transport.” Perhaps, if their
multi-kernel approach is the right one, we should
be demanding a true core-to-core message-passing
mechanism, exposed in the official architecture.

• One of the traditional functions of the OS is to
manage resources for contending processes and
threads. As hardware becomes more complex, with
more resources to be contended over, the resource-
management job of the OS becomes harder. Visibil-
ity matters: if you can’t see it, it’s hard to manage it.
Of course, inferential techniques can sometimes be
made to work, but explicit monitoring of important
resources seems like a better way.
Modern CPUs do have lots of performance coun-
ters; this would seem like an ideal interface between
hardware and the OS. However, most of these coun-
ters are poorly documented, and inconsistent even
between CPUs from the same vendor. We should
demand a consistent, well-documented subset of
these performance counters that the OS can rely on
– and when the architects invent a new resource
that could run out, they should be honest enough
to make its performance counters part of the official
definition.

References
[1] A. Baumann, S. Peter, A. Schpbach, A. Singhania,

T. Roscoe, P. Barham, and R. Isaacs. Your computer is
already a distributed system. Why isn’t your OS? InProc.
HotOS, 2009.

[2] N. L. Binkert, R. G. Dreslinski, L. R. Hsu, K. T. Lim, A. G.
Saidi, and S. K. Reinhardt. The M5 Simulator: Modeling
Networked Systems.IEEE Micro, 26(4):52–60, 2006.

[3] F. R. Johnson, R. Stoica, A. Ailamaki, and T. C. Mowry.
Decoupling contention management from scheduling. In
Proc. ASPLOS, pages 117–128, 2010.

[4] D. Nellans, R. Balasubramonian, and E. Brunvand. OS
Execution on Multi-Cores: Is Out-Sourcing Worthwhile?
SIGOPS Oper. Syst. Rev., 43(2):104–105, 2009.

[5] D. Sanchez, R. M. Yoo, and C. Kozyrakis. Flexible archi-
tectural support for fine-grain scheduling. InProc. ASP-
LOS, pages 311–322, 2010.

[6] V. Soundararajan and J. M. Anderson. The impact of man-
agement operations on the virtualized datacenter. InProc.
ISCA, pages 326–337, 2010.

[7] D. Tsafrir, Y. Etsion, D. G. Feitelson, and S. Kirkpatrick.
System noise, OS clock ticks, and fine-grained parallel ap-
plications. InProc. ICS intl. conf. on Supercomputing,
pages 303–312, 2005.


